
Proceedings of the ECCOMAS Thematic International Conference on
Simulation and Modeling of Biological Flows (SIMBIO 2011)
September 21–23, 2011, VUB, Brussels, Belgium

An Efficient Semi–Implicit Method for the Simulation of Blood Flow in Axi ally

Symmetric Arteries.

Michael Dumbser ∗, Vincenzo Casulli∗, and Eleuterio F. Toro ∗

1 Laboratory of Applied Mathematics
Via Mesiano, 77.
I-38100 Trento, Italy
michael.dumbser@ing.unitn.it

Abstract
Blood flow in arterial systems is described by the three-dimensional Navier-Stokes equations within a time dependent
spatial domain that accounts for the viscoelasticity of thearterial walls. These equations are simplified by assuming
cylindrical geometry, axially symmetric flow, and hydrostatic equilibrium in the radial direction. In this paper an
efficient semi-implicit method is formulated in such a fashion that numerical stability is obtained at a minimal com-
putational cost. The resulting computer model is relatively simple, robust, accurate, and extremely efficient. These
features are illustrated on non trivial test cases where theexact analytical solution is known, and by an example of a
realistic flow through a complex arterial system.
Keywords: blood flow; compliant arteries; moving boundaries; axiallysymmetric flow; hydrostatic equilibrium;
semi-implicit method; finite difference; finite volume

Introduction
Blood flow in medium to large arterial systems can

be accurately described by the three-dimensionalNavier-
Stokesequations within a time dependent spatial domain.
These equations, however, are too complex to be efficiently
solved over a network of systemic arteries and, alterna-
tively, over-simplified one-dimensional equations are often
used.

Assuming cylindrical geometry and axially symmet-
ric flows, the two-dimensional Navier-Stokes equations in
cylindrical coordinates can be considered to be a valid dif-
ferential model for blood flow in compliant arteries. More-
over, since the axial scale is much larger than the radial
scale, a dimensional analysis shows that the pressure can
be assumed to be in (radial) hydrostatic equilibrium (see,
e.g., [1, 2]). Consequently, themomentumequation and
the incompressibilitycondition for axially symmetric, hy-
drostatic flows in cylindrical coordinates are taken to be
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whereu(x, z, t) andw(x, z, t) are the unknown velocity
components in the axialx- and radialz-directions, respec-
tively; t is the time;p(x, t) is the normalized pressure, as-

sumed to be in static equilibrium in the radial direction;
andν is a nonnegative kinematic viscosity coefficient.

The flow is confined within a dynamic boundary given
by the arterial wall. Integrating the continuity equation
along the radial direction, and using a kinematic condition
at the moving boundary, leads to the following equation for
themoving vessel boundary
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whereA = πR2 is the cross section area andR(x, t) is the
unknown arterial radius.

To close the problem, anequation of state, relating the
radiusR to the unknown pressurep, needs to be specified.
To this purpose, a typical choice is the law of Laplace

p = pext + β(R − R0), (4)

wherepext is a specified external pressure,β is a positive
‘rigidity coefficient’, andR0 is the equilibrium radius (see,
e.g., [2]).

The boundary conditions at the arterial wall (z = R)
and along thex-axis (z = 0), are assumed to be

u(x,R, t) = 0 and
∂u(x, z, t)

∂z

∣

∣

∣

z=0
= 0 (5)
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1 A SEMI-IMPLICIT FINITE VOLUME
MODEL

1.1 Unstructured staggered grid

To simulate arterial flows one assumes that the arterial
system consists in a set of interconnected arterial branches
where the flow is governed by equations (1)–(3). Each
branch is then subdivided into an arbitrary set of non–
overlapping segments so that the overall computational do-
main along the axial direction is composed by a total of
Ns segments, having a non–uniform length∆xj , j =
1, 2, . . . , Ns. The left and the right end points of thej–th
segment are identified by the indicesℓ(j) andr(j), respec-
tively.

Along the radial direction a finite difference mesh
that allows up toNz rings is defined by specifying a
monotonically increasing radial distributionzk+ 1

2
, k =

0, 1, . . . , Nz − 1, with z 1
2

= 0. By denoting withRn
j the

discrete arterial radius at thej–th axial location and time
level tn, the outer ring containing the moving vessel wall
is denoted byKn

j so thatKn
j ≤ Nz andRn

j − zK− 1
2

> 0.
Moreover, in order to fully account for the dynamics of the
moving boundary, a radial mesh distribution is locally de-
fined aszn
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= zk+ 1
2

for all k = 0, 1, . . . ,Kn
j − 1 and
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) for all k = 1, 2, . . . ,Kn
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The discrete axial velocitiesun
j,k, assumed to be con-

stant within each ring, are located at the center point
of the j–th segment and for each radial locationk =
1, 2, . . . ,Kn

j . The positive direction forun
j,k is assumed

to be fromℓ(j) to r(j).
The discrete pressurepn

i is located at the segment end
points. The set of segments that share thei–th pressure
point is denoted bySi, i = 1, 2, . . . , Np, whereNp is the
total number of pressure points. Typically,Si contains two
elements indicating the two consecutive segments within
the same arterial branch that share thei–th pressure point.
Si contains only one element when thei–th pressure point
is an end point of the arterial system, andSi contains three
or more elements when thei–th pressure point represents a
junction of three or more arterial branches. Whenj ∈ Si,
then thei–th pressure point is an end point of thej–th seg-
ment, and℘(i, j) denotes the other end point of this seg-
ment, which is itself a pressure point and is a neighbor of
the i–th pressure point. Finally, the discrete radial veloci-
tieswn

i,k+ 1
2

are located on each pressure point and radially

distributed atzk+ 1
2

for all k = 1, 2, . . . ,Kn
i − 1.

1.2 Semi-implicit discretization

In order to derive a stable and efficient algorithm for
simulating fluid flow in arterial systems, following some
basic ideas commonly used in free-surface hydrodynam-
ics [5, 8], the pressure in the momentum equation (1) and
the velocity in the moving boundary equation (3), are dis-

cretized by theθ-method. In addition, for stability, the
viscous term is discretized implicitly and the advective
terms in equation (1) are discretized within an Eulerian-
Lagrangian framework. Thus, a consistentfinite difference
discretization of the momentum equation, on each ring at
the center of thej–th segment, is taken to be
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where∆t is the time step size;θ is an implicitness factor
to be taken in the range12 ≤ θ ≤ 1 (see [5] for a detailed
analysis of theθ-method);pn+θ = θpn+1 + (1 − θ)pn;
∆zn

j,k± 1
2

= 1
2 (∆zn

j,k + ∆zn
j,k±1); andun,L

j,k denotes the

axial velocity component interpolated at timetn at the end
of the Lagrangian trajectory. The Lagrangian trajectory is
calculated by integrating the velocity backwards in time
from node(j, k) at tn+1 to its location at timetn. Alterna-
tive explicit schemes for advection, such as a conservative
formulation that allows for accurate simulation of rapidly
varying flows [18], are also possible.

Whenk = 1 andk = Kn
j , respectively, the values of

un+1
j,0 andun+1

j,K+1 in equation (6) are eliminated by means
of the boundary conditions (5) which yield

un+1
j,K+1 = −un+1

j,K and un+1
j,0 = un+1

j,1 (7)

At each pressure point a semi-implicitfinite volumeap-
proximation of the moving boundary equation (3) is taken
to be

Vi(p
n+1
i ) = Vi(p

n
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wherean
j,k = 2πzn

j,k∆zn
j,k is thek–th cross section area,

un+θ
j,k = θun+1

j,k + (1 − θ)un
j,k, and

Vi(p) =
π

2

∑

j∈Si

∆xj [Rj(p)]2

is a nonlinear function representing the fluid volume asso-
ciated with thei–th pressure point. As indicated,Vi(p) is
a function of the radiiRj(p), for all j ∈ Si which, in turn,
depend on the specified pressurep through the equation of
state (4). Finally,σi,j is a sign function associated with the
orientation of thej–th axial velocity. Specifically,

σi,j =
r(j) − 2i + ℓ(j)

r(j) − ℓ(j)

Equations (6) and (8) constitute amildly nonlinearsys-
tem of at mostNzNs + Np equations. This system has
to be solved at each time step in order to calculate the new
field variablesun+1

j,k andpn+1
i throughout the flow domain.
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2 NUMERICAL TESTS
The above numerical method is first applied on two

test problems with known analytical solution. Then a
laminar boundary layer flow through a rigid tube at high
Reynolds number is compared with reliable reference so-
lutions available from boundary layer theory. Finally, the
proposed algorithm is applied to simulate a pulsating flow
through a simplified arterial system.

2.1 Steady flow in an elastic tube

In this test problem a steady flow through an elastic
tube is numerically determined by applying the proposed
algorithm over a sufficiently long time interval. For any
given positive constantsν, β, pext, R0 andQ, if the ad-
vective termsu∂u

∂x
+ w ∂u

∂z
in the momentum equation (1)

are neglected, an exact steady solution of problem (1)–(5)
within the domainΩ = {(x, z) : 0 ≤ x ≤ L; 0 ≤ z ≤
R(x)}, with L <

πβR5
0

40νQ
, can be shown to be (see [10])

u(x, z) =
2Q

πR4(x)

[

R2(x) − z2
]

(9)

p(x) = pext + β[R(x) − R0] (10)

where the tube radius is given by

R(x) = 5

√

R5
0 −

40νQ

πβ
x (11)

For the present test the chosen parameters areν =
10−3, β = 2500, pext = 0, R0 = 0.025, Q = 0.001875
and L = 1. Numerically, a transient solution is gener-
ated from the starting timet = 0 with initial conditions
u(x, z, 0) = 0 andR(x, 0) = R0. Then, for timest > 0,
the boundary conditions at the inlet (x = 0) are given by
specifying the exact velocity profile from equation (9), and
the exact pressure at the outlet (x = L) is prescribed ac-
cording to equation (10).

The computational domain is discretized withNs =
100 segments in the axial direction, andNz = 50 rings are
used along the radial direction to discretize the reference
radiusR0. Assuming that the steady state is reached at
the final timete = 10, by usingθ = 1 the simulation is
advanced forNt = 100 time steps with a time step size
∆t = te/Nt. The resulting tube radius obtained att =
te, and some representative velocity profiles at different
axial locations, are illustrated in Figure 1. The classical
parabolic Hagen–Poiseuille profile for the velocity is well
reproduced and an overall excellent agreement between the
numerical results and the exact solution is clearly shown.

Since the analytical solution of the present test prob-
lem is sufficiently smooth, the order of accuracy of the
proposed algorithm can be numerically determined by suc-
cessively refining the spatial grid size. To this purpose, the

Table 1: Numerical convergence results inL2 error norm
for u(x, z) and forR(x)

Np Nz ǫu,Nt

L2
Ou

L2
ǫR,Nt

L2
OR

L2

100 50 2.9227E-05 4.1649E-06
200 100 7.5484E-06 2.0 1.1241E-06 1.9
400 200 1.9181E-06 2.0 2.9256E-07 1.9
800 400 4.8321E-07 2.0 7.4158E-08 2.0

discreteL2 error norms for the axial velocity and for the
radius, respectively, are taken to be

ǫu,n
L2

=
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where the exact solution foru(xj , z
n
k ) andR(xj) is given

by equations (9) and (11), respectively. The errorsǫu,n
L2

andǫR,n
L2

are computed by using a sequence of successively
refined meshes obtained withNs = 100, 200, 400 and
800, andNz = 50, 100, 200 and 400, respectively. The
time step size is kept constant∆t = 0.1. The convergence
results listed in Table 1 indicate that the designed second
order of accuracy,Ou

L2
andOR

L2
, is achieved for this steady

test problem.

2.2 Womersley profiles

In this section the proposed semi–implicit scheme is
verified against the exact solution found by Womersley for
an oscillating flow in a rigid tube [19]. The flow is driven
by a sinusoidal pressure gradient (pressure difference)

pout(t) − pin(t)

L
= − P̂

ρ
eiωt (14)

which is imposed at the ends of a tube of lengthL. Here,
P̂ is the amplitude of the oscillating pressure gradient,ρ is
the fluid density,pin is the pressure at the tube inlet,pout is
the pressure on the tube outlet,ω is the angular frequency
and i =

√
−1 denotes the imaginary unit. According to

Womersley [19], the axial velocity profile is uniform in the
x direction and is given by the real part of the expression

u(x, z, t) =
P̂

ρ

1

iω

[

1 − J0(αyi
3
2 )

J0(αi
3
2 )

]

eiωt (15)

with
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Figure 1: Comparison of the numerical results obtained at time te = 10.0 with the exact steady solution. Shape of the
elastic tube (left) and selected velocity profiles at different axial positions (right).

y =
z

R
and α = R

√

ω

ν

Here,J0 is the zero–th order Bessel function of the first
kind, andy is the dimensionless radial coordinate. For the
present test the chosen parameters areL = 1, R = 0.025,
P̂ = 1000, ρ = 1000, ω = 2π andβ = 1012 so that the
tube wall is sufficiently rigid. Moreover, in order to match
the Womersley solution, the nonlinear advective terms are
neglected.

For the viscosity two cases are considered. In a first
case a low Reynolds number (that is based on the tube
diameterD = 2R = 0.05) is obtained by choosing
ν = 10−3. In this caseRe = 50, the resulting viscous
effect dominates the entire tube, and the velocity profile
resembles the classical Hagen–Poiseuille flow. In a second
case, by choosingν = 10−5 the corresponding Reynolds
number isRe = 5000 and the resulting viscous effect is
essentially confined to a boundary layer close to the tube
wall. In this case the velocity profile is essentially flat at the
center of the tube, whereas a sharp boundary–layer with
high velocity gradients develops near the tube walls.

As initial conditions,u(x, z, 0) is taken from equation
(15), andR(x, 0) = R0 is assumed. Then, for timest > 0
the analytic pressure gradient from (14) is specified at the
two ends of the tube as boundary conditions.

The computational domain is then discretized with
Ns = 100 segments in the axial direction andNz = 50
rings in radial direction. By usingθ = 0.5 and a fixed
time–step size∆t = 0.01, the unsteady simulation cov-
ers three cycles until a final timete = 3 is reached. The
computated results for both, the low and the high Reynolds
number case, are illustrated in Figure 2. An excellent
agreement between the numerical and the exact solution
is clearly shown. Note, in particular, that only a few grid

Table 2: Numerical convergence results inL2 error norm
for the axial velocity at timete = 2.0.

Ns Nz Nt ǫu
L2

Ou
L2

400 100 100 5.2651E-06
800 200 200 1.5000E-06 1.8
1600 400 400 3.9949E-07 1.9
3200 800 800 1.0319E-07 2.0

points are sufficient to resolve the sharp boundary layer in
the high Reynolds number case. This aspect turns out to
be quite useful in realistic simulations of cardio–vascular
circulation, where the Reynolds number changes over sev-
eral orders of magnitude from the big vessels down to the
capillaries.

The model accuracy for the presentunsteadytest prob-
lem is established numerically by measuring the error
norm on a series of simulations obtained with successively
refined meshes. Moreover, in order to verify the time accu-
racy, the time step size is reduced accordingly. Thus, with
reference to the high Reynolds number flow (Re = 5000),
the error normǫu

L2
is computed atte = 2 by using a se-

quence of successively refined meshes withNs = 400,
800, 1600, 3200;Nz = 100, 200, 400, 800; andNt = 100,
200, 400, 800, respectively. For this test theθ-method with
θ = 0.5 is extended also to the viscous term.

The convergence results are listed in Table 2, where
theL2–error normǫu

L2
and the resulting order of accuracy

Ou
L2

are reported to confirm that second order of accuracy
is achieved also for solvingunsteadyflow problems.
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Figure 2: Comparison of the exact solution of Womersley [19]with the numerical results at different times. Left (Re = 50):
the different graphs from left to right correspond to the timest = 1.7, t = 1.8, t = 1.9, t = 2.0 andt = 2.1, respectively.
Right (Re = 5000): the different graphs from left to right correspond to the timest = 1.8, t = 1.9, t = 2.0, t = 2.1 and
t = 2.2, respectively.

2.3 Laminar high Reynolds number bound-
ary layer

The test problem presented in this section is moti-
vated from the pure necessity of a thorough code validation
rather than from the physics of real physiological flows.
In all the previous test problems, the nonlinear convective
terms could be neglected, hence in this section a test prob-
lem with known reference solution is considered where the
convective terms are important. For this purpose, a steady
high Reynolds number boundary layer flow in a rigid tube
of lengthL with variable cross section is considered. In
the present test the nonlinear advective terms play a cru-
cial role and cannot be neglected because, according to
the classical boundary layer theory of Prandtl [14, 15], the
convective accelerations within the boundary layer are of
order 1 in axial direction, whereas the vertical accelera-
tions are of the same order of the boundary layer thick-
ness. It is well known [15] that in tubes withconstantra-
dius, boundary layers produce a displacement effect, which
causes an acceleration of the fluid in the inviscid core of
the flow. Therefore, in order to preserve a uniform axial
velocity within the inviscid inner core of the tube, an ap-
propriate (non constant) tube radius must be selected. This
is achieved by taking

R(x) = R0 + δ(x) (16)

whereR0 is the radius at the tube inlet atx = 0 andδ(x) is
the displacement thickness of the boundary layer. For suf-
ficiently high Reynolds numbers the boundary layer is so
thin that it behaves like the boundary layer on a flat plate,
see [13] and [15]. The classical Blasius boundary layer
solution on a flat plate is given by

u(x, y) = U0f
′(η), with η = y

√

U0

2νx

wherey = R−z is the distance from the tube wall,η is the
dimensionless wall distance andU0 is the inflow velocity.
The functionf(η) is the solution of the classical Blasius
boundary layer equation

f ′′′ + ff ′ = 0 (17)

with the usual boundary conditions

f(0) = 0, f ′(0) = 0, lim
η→∞

f ′(η) = 1 (18)

where the primes denote derivatives with respect toη. In
the present investigationf(η) is determined by solving the
boundary value problem (17)-(18) with a tenth order dis-
continuous Galerkin finite element scheme described in
[9]. The displacement thickness of the Blasius boundary
layer needed in equation (16) is then given by

δ(x) =

√

2νx

U0

∞
∫

0

[1 − f ′(η)]dη

For the present test the chosen parameters areL = 1,
R0 = 0.1, U0 = 1, β = 1012, andν = 10−6, which corre-
sponds to a Reynolds numberRe = 200, 000 based on the
inflow velocity U0 and the inlet tube diameter2R0. Nu-
merically, a transient solution is generated from the start-
ing timet = 0 with initial conditionsu(x, z, 0) = U0 and
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Figure 3: Comparison of the Blasius boundary layer solu-
tion with the numerical results.

R(x) given by equation (16). Then, for timest > 0, at
the inlet (x = 0) a constant velocityu(0, z, t) = U0 is im-
posed as a boundary condition, and at the outlet (x = L) a
pressure boundary conditionp(L, t) = 0 is prescribed.

The chosen grid is uniform withNs = 100 segments
along the axial direction, and has a non–uniform distribu-
tion of Nz = 168 rings in radial direction with a spacing
of ∆zn

j,k = 5 · 10−3 for z ∈ [0; 0.085] and∆zn
j,k = 10−4

for z > 0.085. Assuming that the steady state is reached
at the final timete = 5, by usingθ = 1 the simula-
tion is advanced forNt = 50 time steps with a time step
size∆t = te/Nt. In Figure 3 the numerical results are
compared at the axial positionx = 0.75 with the Blasius
boundary layer solution. An excellent agreement between
the two solutions can be observed. Moreover, because of
the radius adjustment, the inviscid core of the flow main-
tains the prescribed inflow velocityU0 = 1 with good ac-
curacy.

2.4 Application to a realistic model of the
human arterial system

Simulating blood flow in large systemic arteries is a
challenging task usually tackled by one-dimensional mod-
els (see, e.g., [12, 16, 17]). In the present test a sim-
plified but realistic human arterial system is considered.
Here, advection, viscosity and wall elasticity are equally
important. This system contains55 branches with varying
lengths, rigidity coefficients, and equilibrium radii, as de-
tailed in [16]. A sketch of the system is shown in Figure 4.
The overall system length is7.341m where the blood is
assumed to be a Newtonian fluid with constant viscosity
ν = 4.0 · 10−6, according to [13].

Numerically, a periodic solution is generated from the
starting timet = 0 with initial conditionsu(x, z, 0) = 0

andp(x, 0) = pext, where the equilibrium reference pres-
sure ispext = 80mmHg, (1mmHg = 133.322Pa).
Then, for timest > 0, the boundary condition at the as-
cending aorta is prescribed by specifying a periodic pres-
sure signal with periodT = 1 s, similar to the waveform
used in [16]. Specifically,

pin(t) =
P̂

ρK
max[0, sin(2πt + 0.628) − 0.588] (19)

whereP̂ = 40mmHg is the maximum amplitude of the
pressure wave,ρ = 1000 kg/m3 is the fluid density, and
K = 0.412 is a normalization constant. On the remaining
28 open ends of the arterial tree, transmissive boundary
conditions are imposed.

The arterial system is decomposed into a set of seg-
ments with an almost uniform length∆xj = 5mm result-
ing intoNp = 1, 448 pressure points. Then, assuming that
the arterial radius does not exceed the valueR0 = 2 cm, by
choosingNz = 100 one has a uniform radial mesh spacing
∆zk = 0.2mm. The simulation covers 10 cardiac cycles
until te = 10 s with θ = 0.6 andNt = 1, 000, so that the
time step size is∆t = 0.01 s. It is important to recall that
nonlinear advective terms have been discretized by using
the Eulerian–Lagrangian approach. Consequently, for any
θ ≥ 1

2 the proposed method can be shown to be uncondi-
tionally stable [5], but the time step size has to be small
enough merely to resolve this short time scale.

The resulting time histories for pressure, artery radius
and axial velocity atz = 0 are shown in Figure 5 at
four different locations, namely at the end of the ascend-
ing aorta, at the end of the right carotid, at the end of the
right subclavian and at the end of the right femoral artery
(the precise locations are highlighted in Figure 4). Fig-
ure 6 shows some detailed velocity profiles calculated at
the above locations. It can be seen that the velocity pro-
file in the ascending aorta is almost flat, due to the high
Reynolds number at this location, whereas the reduced
Reynolds number in the smaller arteries yields velocity
profiles that are similar to the classical parabolic Hagen–
Poiseuille flow.

To validate the above results, the previous calculations
are systematically repeated with all parameters unchanged,
except radial resolution that starts withNz = 1 (which
corresponds to a one–dimensional, sectionally averaged
model) and goes up toNz = 10, 100, 1000, and 10000.
The latter mesh hasNpNz = 14, 480, 000 control volumes
and an extremely fine radial mesh size∆zk = 2µm. For
each mesh resolution Figure 7 (left) shows the cross sec-
tion average velocity computed at the end of the ascending
aorta during the tenth cardiac cycle. A general good agree-
ment can be observed and, in particular, convergence is
indicated by the velocity signals obtained withNz = 100,
1000 and 10000 that practically overlap. HenceNz = 100
used earlier, can be assumed to provide a sufficiently de-
tailed radial resolution. Moreover, the computed wave-
form, as well as the wave amplitudes are in good agree-
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Figure 5: Time histories of pressure, radius, and axial velocity atz = 0 in the ascending aorta (top left), in the right carotid
(top right), in the right subclavian (bottom left) and in theright femoral artery (bottom right).
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ment with the experimental results presented in [11]. For
comparison, the simplified waveform of the experimental
results reported in [13] is shown on the right of Figure 7.

The above calculations have been performed on a lap-
top with an Intel i7 CPU having2.80GHz clock fre-
quency and6GB of RAM. The problem size and the re-
quired computer time to complete one cardiac cycle for
different radial resolution are reported in Table 3. These
results confirm that the proposed numerical method is very
accurate, highly efficient and a good candidate for large–
scale simulations of the human cardio–vascular system.

Conclusions
A semi-implicit method for solving the governing

equations of axially symmetric, hydrostatic flows in cylin-
drical coordinates has been presented. The combination of
judicious selection of terms that are discretized implicitly
and use of an Eulerian-Lagrangian method for treating the
advective terms makes the present formulation stable, sim-
ple and extremely efficient. The resulting method is locally
and globally mass conservative. The computed results for
different test problems verify the computational perfor-
mance and the accuracy of the proposed algorithm. This
model can potentially be used as one of the elements in fu-
ture interdisciplinary investigations at large scale, consid-
ering a much more detailed model for the human cardio–
vascular system than the simplified test problem studied in
this paper. The method may also provide the basic hydro-
dynamic information needed for the simulation of transport
processes, e.g. in the context of drug–delivery.
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Figure 7: Left: Velocity signals in the ascending aorta computed during the tenth cardiac with varying radial resolution.
Right: Simplified experimental waveform according to Pedley [13].

Table 3: Model size and wallclock time needed for the simulation of one cardiac cycle

Radial resolution Number of control volumes (NpNz) Computer time
Nz = 1 (1D model) 1,448 0.35 s
Nz = 10 (2D model) 14,480 0.38 s
Nz = 100 (2D model) 144,800 1.40 s
Nz = 1, 000 (2D model) 1,448,000 13.14 s
Nz = 10, 000 (2D model) 14,480,000 278.00 s
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