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Abstract

Blood flow in arterial systems is described by the three-disianal Navier-Stokes equations within a time dependent
spatial domain that accounts for the viscoelasticity ofdterial walls. These equations are simplified by assuming
cylindrical geometry, axially symmetric flow, and hydrastaequilibrium in the radial direction. In this paper an
efficient semi-implicit method is formulated in such a fashthat numerical stability is obtained at a minimal com-
putational cost. The resulting computer model is relagivnple, robust, accurate, and extremely efficient. These
features are illustrated on non trivial test cases wherethet analytical solution is known, and by an example of a
realistic flow through a complex arterial system.

Keywords: blood flow; compliant arteries; moving boundaries; axiaijyjmmetric flow; hydrostatic equilibrium;
semi-implicit method; finite difference; finite volume

Introduction sumed to be in static equilibrium in the radial direction;
Blood flow in medium to large arterial systems can andv is a nonnegative kinematic viscosity coefficient.
be accurately described by the three-dimensidialier- The flow is confined within a dynamic boundary given

Stokesequations within a time dependent spatial domain. by the arterial wall. Integrating the continuity equation
These equations, however, are too complex to be efficientlyalong the radial direction, and using a kinematic condition
solved over a network of systemic arteries and, alterna-atthe moving boundary, leads to the following equation for
tively, over-simplified one-dimensional equations arenft themoving vessel boundary

used.

Assuming cylindrical geometry and axially symmet- A 9 R
ric flows, the two-dimensional Navier-Stokes equations in e + 2778— (/ 2U dz) =0 3
cylindrical coordinates can be considered to be a valid dif- t T \Jo

rentl mocel o lood o i complant e, More et i i o coss sectonaea s ) s e
’ 9 unknown arterial radius.

scale, a dimensional analysis shows that the pressure can To close the problem, aequation of staterelating the

be assumed to be in (radial) hydrostatic equilibrium (see, radiusR to the unknown pressuge needs to be specified.

e.g, [1, 2]). Consequently, thenomentunequation and . . .
theincompressibilitycondition for axially symmetric, hy- To this purpose, a typical choice is the law of Laplace

drostatic flows in cylindrical coordinates are taken to be

p:peazt"‘ﬁ(R_RO)» (4)
ou ou ou o v o ou wherep.,; is a specified external pressureis a positive
9 T T, T o 2o (Zaz>(1) ‘rigidity coefficient’, and R, is the equilibrium radius (see,

, e.q., [2]).
M + M =0 2 The boundary conditions at the arterial wall £ R)

and along ther-axis (z = 0), are assumed to be

whereu(z, z,t) andw(x, z,t) are the unknown velocity

components in the axial- and radialz-directions, respec- _

: . : i . u(z,R,t) =0
tively; ¢ is the time;p(z, t) is the normalized pressure, as-

ou(zx, z,t)

and 0z z=0

-0 (5)
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1 A SEMI-IMPLICIT FINITE VOLUME cretized by thed-method. In addition, for stability, the
MODEL viscous term is discretized implicitly and the advective
1.1 Unstructured staggered grid terms in equation (1) are discretized within an Eulerian-
Lagrangian framework. Thus, a consisténite difference
To simulate arterial flows one assumes that the arterialdiscretization of the momentum equation, on each ring at
system consists in a set of interconnected arterial branche the center of thg—th segment, is taken to be
where the flow is governed by equations (1)—(3). Each
branch is then subdivided into an arbitrary set of non— n+1 n,L n+0 n+0

. . Uz 'y — Us p - D
overlapping segments so that the overall computational do- gk X ok (J)A 49)
main along the axial direction is composed by a total of t T
N, segments, having a non-uniform lenghty;, j = o Uik T4k om . L
1,2,...,N,. The left and the right end points of theth , Jhty AL Bko3 B 1 ®)
segment are identified by the indic&g) andr(j), respec- 20 A2

tively.

Along the radial direction a finite difference mesh
that allows up toN, rings is defined by specifying a analysis of they-method);p"? — Gp"*1 + (1 — O)p":
monotonically increasing radial distributior),, 1, k = I '

+3 Az = (A7, + Az%,.,); andu’,’ denotes the
0,1,...,N; — 1, with z; = 0. By denoting wnﬁR" the Fjket T 2 5k g kxll gk
discrete arterial radius at theth axial location and time ~ axial velocity component interpolated at timeat the end
level t,,, the outer ring containing the moving vessel wall ©f the Lagrangian trajectory. The Lagrangian trajectory is
is denoted by so thati? < N, andR? — z 1 > 0. calculated by integrating the velocity backwards in time
Moreover, in order to fuIIy account for the dynamlcs ofthe from node(j, k) att, 1, to its location at time,. Alterna-

fined asz”, , = z,,1 forall k = 0,1 K™ _1and formulation that allows for accurate simulation of rapidly
1 P I ]

3. k+1 - .
n’ A inalv. the thick f theth ri varying flows [18], are also possmle._
Rzj. Accordingly, the thickness of the-th ring Whenk = 1 andk = K7, respectively, the values of

2" 1 and its mid radius is

whereAt is the time step sizej is an implicitness factor
to be taken in the range < 6 < 1 (see [5] for a detailed

FKry =
is given byAz ' =2

Gkts ik wet andul il i equatlon (6) are eliminated by means
n 1 P n ] +1
2 = 2 (2] + 27, _) forall k=12, K of the boundary conditions (5) which yield
The discrete aX|aI veIouUes;Lk, assumed to be con-
stant within each ring, are located at the center point yitl unﬂ and Y gt %)
of the j—th segment and for each radial locatién= G+ T K 30 T T
1,2,...,K}. The positive direction for}, is assumed At each pressure point a semi-implifiitite volumeap-
to be fromé(j) to r(5). proximation of the moving boundary equation (3) is taken

The discrete pressugé’ is located at the segment end to be
points. The set of segments that share #hh pressure
point is denoted by;, ¢ = 1,2,..., N,, whereN, is the K
total number of pressure points. Typicall}, contains two Vi(pitt) = _ At Z i Z Q" kun+9 8)
elements indicating the two consecutive segments within o
the same arterial branch that share#hié pressure point.
S; contains only one element when theh pressure point
is an end point of the arterial system, afidcontains three  u; 20 = 9 nH +01- H)U}L,k, and
or more elements when tlieth pressure point represents a
junction of three or more arterial branches. Whea S;, Vi(p) = m Z Az,
then thei—th pressure point is an end point of theh seg-
ment, andp(i, j) denotes the other end point of this seg-
ment, which is itself a pressure point and is a neighbor o
the i—th pressure point. Finally, the discrete radial veloci-
tiesw™ o d are located on each pressure pomt and radially

dlstnbuted aty 1 forallk =1,2,... K7 —

jES;

wherea}, = 2mz7, Az7) is thek—th cross section area,

JES:
¢ is a nonlinear function representing the fluid volume asso-
ciated with thei—th pressure point. As indicate®;(p) is
a function of the radi?; (p), for all j € S; which, in turn,
depend on the specified pressprhirough the equation of
state (4). Finallyg; ; is a sign function associated with the
orientation of thej—th axial velocity. Specifically,

1.2 Semi-implicit discretization r(j) — 20+ ()
04 = — 7~ 7
In order to derive a stable and efficient algorithm for ! r(j) —£(j)
simulating fluid flow in arterial systems, following some Equations (6) and (8) constituter@ldly nonlinearsys-

basic ideas commonly used in free-surface hydrodynam-tem of at mostV, N, + N, equations. This system has
ics [5, 8], the pressure in the momentum equation (1) andto be solved at each time step in order to calculate the new
the velocity in the moving boundary equation (3), are dis- field variableszu;?jcr1 andp*! throughout the flow domain.
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2 NUMERICAL TESTS

The above numerical method is first applied on two
test problems with known analytical solution. Then a
laminar boundary layer flow through a rigid tube at high
Reynolds number is compared with reliable reference so-
lutions available from boundary layer theory. Finally, the
proposed algorithm is applied to simulate a pulsating flow
through a simplified arterial system.

2.1 Steady flow in an elastic tube

In this test problem a steady flow through an elastic
tube is numerically determined by applying the proposed
algorithm over a sufficiently long time interval. For any
given positive constants, (3, p..:, Ro and @, if the ad-

vective termsu% + w% in the momentum equation (1)

are neglected, an exact steady solution of problem (1)—(5)

within the domain = {(z,2) : 0 < ¢ < L;0 < z <

R(z)}, with L < %, can be shown to be (see [10])

w,) = s [R¥(a) = ] ©
p(x) = peat + B[R(x) — Ro) (10)
where the tube radius is given by
- 40
R(z) = {| RS — W—VﬁQz (11)

For the present test the chosen parametersyare
1073, B = 2500, pest = 0, Ry = 0.025, Q@ = 0.001875
and L = 1. Numerically, a transient solution is gener-
ated from the starting time = 0 with initial conditions
u(z,z,0) = 0andR(z,0) = Ry. Then, for timeg > 0,
the boundary conditions at the inlet & 0) are given by
specifying the exact velocity profile from equation (9), and
the exact pressure at the outlet £ ) is prescribed ac-
cording to equation (10).

The computational domain is discretized with, =
100 segments in the axial direction, and = 50 rings are
used along the radial direction to discretize the reference
radius Ry. Assuming that the steady state is reached at
the final timet, = 10, by usingd = 1 the simulation is
advanced forV; = 100 time steps with a time step size
At = t./N;. The resulting tube radius obtainedtat
t., and some representative velocity profiles at different
axial locations, are illustrated in Figure 1. The classical
parabolic Hagen—Poiseuille profile for the velocity is well

Table 1: Numerical convergence resultslig error norm
for u(z, z) and forR(x)

N, N. e b, ey Of
100 50 2.9227E-05 4.1649E-06

200 100 7.5484E-06 2.0 1.1241E-06 1.9
400 200 1.9181E-06 2.0 2.9256E-07 1.9
800 400 4.8321E-07 2.0 7.4158E-08 2.0

discreteL, error norms for the axial velocity and for the
radius, respectively, are taken to be

N, K}
: 2
S 2’/TZ Z [u}lk - u(x],z,?)} 2 Az AzT
j=1k=1
(12)
N, ,
e = [R? — R(z;)]” A; (13)
j=1

where the exact solution far(z;, z;') and R(z;) is given

by equations (9) and (11), respectively. The errdf$
andeﬁ” are computed by using a sequence of successively
refined meshes obtained withi, = 100, 200, 400 and
800, andN, = 50, 100, 200 and 400, respectively. The
time step size is kept constafst = 0.1. The convergence
results listed in Table 1 indicate that the designed second
order of accuracy)y andOf , is achieved for this steady
test problem.

2.2 Womersley profiles

In this section the proposed semi—implicit scheme is
verified against the exact solution found by Womersley for
an oscillating flow in a rigid tube [19]. The flow is driven
by a sinusoidal pressure gradient (pressure difference)

— _E eiwt
P
which is imposed at the ends of a tube of lengthHere,
P is the amplitude of the oscillating pressure gradigris,
the fluid densitypi, is the pressure at the tube inlgg, is
the pressure on the tube outletjs the angular frequency
andi = /—1 denotes the imaginary unit. According to
Womersley [19], the axial velocity profile is uniform in the
x direction and is given by the real part of the expression

pout(t) — Pin (t)

- (14)

reproduced and an overall excellent agreement between the

numerical results and the exact solution is clearly shown.
Since the analytical solution of the present test prob-
lem is sufficiently smooth, the order of accuracy of the
proposed algorithm can be numerically determined by suc-
cessively refining the spatial grid size. To this purpose, th

u( (15)

with
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Figure 1: Comparison of the numerical results obtainedna¢ ti. = 10.0 with the exact steady solution. Shape of the
elastic tube (left) and selected velocity profiles at déferaxial positions (right).

Table 2: Numerical convergence resultslig error norm

)= % and  a— R\/E for the axial velocity at time, = 2.0.
. . . N, N. N et Oy,
Here, Jy is the zero-th order Bessel function of the first 400 100 100 5.2651E-06
kind, andy is the dimensionless radial coordinate. For the 800 200 200 1.5000E-06 1.8
present test the chosen parametersiare 1, R = 0.025, 1600 400 400 3.9949E-07 1.9
P = 1000, p = 1000, w = 27 and( = 102 so that the 3200 800 800 1.0319E-07 2.0

tube wall is sufficiently rigid. Moreover, in order to match
the Womersley solution, the nonlinear advective terms are

neglected. points are sufficient to resolve the sharp boundary layer in
For the viscosity two cases are considered. In a first the high Reynolds number case. This aspect turns out to

case a low Reynolds number (that is based on the tubepe quite useful in realistic simulations of cardio-vascula

diameterD = 2R = 0.05) is obtained by choosing circulation, where the Reynolds number changes over sev-

v = 107%. In this caseRe = 50, the resulting viscous  eral orders of magnitude from the big vessels down to the
effect dominates the entire tube, and the velocity profile capillaries.

resembles the classical Hagen—Poiseuille flow. In a second
case, by choosing = 10~° the corresponding Reynolds
number isRe = 5000 and the resulting viscous effect is
essentially confined to a boundary layer close to the tube
wall. Inthis case the velocity profile is essentially flatad t
center of the tube, whereas a sharp boundary—layer with
high velocity gradients develops near the tube walls.

As initial conditions,u(z, z, 0) is taken from equation
(15), andR(z,0) = Ry is assumed. Then, for tim¢s> 0
the analytic pressure gradient from (14) is specified at the
two ends of the tube as boundary conditions.

The computational domain is then discretized wit
N, = 100 segments in the axial direction add. = 50
rings in radial direction. By using = 0.5 and a fixed
time-step sizeAt = 0.01, the unsteady simulation cov-
ers three cycles until a final time = 3 is reached. The
computated results for both, the low and the high Reynolds  The convergence results are listed in Table 2, where
number case, are illustrated in Figure 2. An excellent the Ly—error norme}  and the resulting order of accuracy
agreement between the numerical and the exact solutionO7  are reported to confirm that second order of accuracy
is clearly shown. Note, in particular, that only a few grid is achieved also for solvingnsteadyflow problems.

The model accuracy for the presemisteadytest prob-
lem is established numerically by measuring the error
norm on a series of simulations obtained with successively
refined meshes. Moreover, in order to verify the time accu-
racy, the time step size is reduced accordingly. Thus, with
reference to the high Reynolds number fla&e(= 5000),
the error normey  is computed at. = 2 by using a se-
guence of successively refined meshes with = 400,
pn 800, 1600, 3200N. = 100, 200, 400, 800; and/; = 100,
200, 400, 800, respectively. For this test thmethod with
0 = 0.5 is extended also to the viscous term.
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Figure 2: Comparison of the exact solution of Womersley {##&h the numerical results at different times. Lefd = 50):

the different graphs from left to right correspond to thegsh= 1.7,¢t = 1.8,¢ = 1.9, ¢ = 2.0 and¢ = 2.1, respectively.
Right (Re = 5000): the different graphs from left to right correspond to timeest = 1.8,¢t = 1.9,¢t = 2.0, ¢ = 2.1 and
t = 2.2, respectively.

2.3 Laminar high Reynolds number bound-

ary layer i

, .
The test problem presented in this section is moti- u(z,y) = Uof'(n),  with — n=yy/5—

vated from the pure necessity of a thorough code validation . _ )
rather than from the physics of real physiological flows. Wherey = R —zisthe distance from the tube wallis the
In all the previous test problems, the nonlinear convective dimensionless wall distance af@ is the inflow velocity.
terms could be neglected, hence in this section a test prob-| '€ function/(x) is the solution of the classical Blasius
lem with known reference solution is considered where the Poundary layer equation
convective terms are important. For this purpose, a steady
high Reynolds number boundary layer flow in a rigid tube P =0 17)
of length L with variable cross section is considered. In
the present test the nonlinear advective terms play a cruyith the usual boundary conditions
cial role and cannot be neglected because, according to
the classical boundary layer theory of Prandtl [14, 15], the
convective accelerations within the boundary layer are of f(0)=0, f(0)=0, lim f'(n)=1 (18)
order 1 in axial direction, whereas the vertical accelera- e
tions are of the same order of the boundary layer thick- where the primes denote derivatives with respeaf.tdn
ness. Itis well known [15] that in tubes wittonstantra- the present investigatiofin) is determined by solving the
dius, boundary layers produce a displacement effect, whichpoundary value problem (17)-(18) with a tenth order dis-
causes an acceleration of the fluid in the inviscid core of continuous Galerkin finite element scheme described in
the flow. Therefore, in order to preserve a uniform axial [9]. The displacement thickness of the Blasius boundary

velocity within the inviscid inner core of the tube, an ap- |ayer needed in equation (16) is then given by
propriate (non constant) tube radius must be selected. This

is achieved by taking

2ux Vi
Sa) =[5 [ £y
R(z) = Ry + (=) (16) o
whereR, is the radius at the tube inletat= 0 andj(x) is For the present test the chosen parameterd.atel,

the displacement thickness of the boundary layer. For suf-Ry, = 0.1, Uy = 1, 3 = 10'2, andr = 109, which corre-
ficiently high Reynolds numbers the boundary layer is so sponds to a Reynolds numbRe = 200, 000 based on the
thin that it behaves like the boundary layer on a flat plate, inflow velocity U, and the inlet tube diamet@®R,. Nu-
see [13] and [15]. The classical Blasius boundary layer merically, a transient solution is generated from the start
solution on a flat plate is given by ing timet = 0 with initial conditionsu(z, z,0) = Uy and
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Figure 3: Comparison of the Blasius boundary layer solu-
tion with the numerical results.

R(x) given by equation (16). Then, for times> 0, at
the inlet ¢ = 0) a constant velocity:(0, z,t) = Uy is im-
posed as a boundary condition, and at the outlet (L) a
pressure boundary conditiguiL, t) = 0 is prescribed.

The chosen grid is uniform wittv, = 100 segments
along the axial direction, and has a non—uniform distribu-
tion of N, = 168 rings in radial direction with a spacing
of Az}, = 5-107%for z € [0;0.085] andAz7, = 107*
for z > 0.085. Assuming that the steady state is reached
at the final timet, = 5, by usingf = 1 the simula-
tion is advanced forv, = 50 time steps with a time step

andp(z,0) = pe.t, Where the equilibrium reference pres-
sure iSpey: = 80mmHg, (I1mmHg 133.322 Pa).
Then, for timest > 0, the boundary condition at the as-
cending aorta is prescribed by specifying a periodic pres-
sure signal with period” = 1 s, similar to the waveform
used in [16]. Specifically,

P
Pin(t) = P max]0, sin(27t + 0.628) — 0.588] (19)

whereP = 40 mmHg is the maximum amplitude of the
pressure wavey = 1000 kg/m? is the fluid density, and

K = 0.412 is a normalization constant. On the remaining
28 open ends of the arterial tree, transmissive boundary
conditions are imposed.

The arterial system is decomposed into a set of seg-
ments with an almost uniform lengthz; = 5mm result-
ing into N, = 1, 448 pressure points. Then, assuming that
the arterial radius does not exceed the vdtde= 2 cm, by
choosingN, = 100 one has a uniform radial mesh spacing
Az, = 0.2mm. The simulation covers 10 cardiac cycles
until ¢, = 10s with # = 0.6 andN; = 1,000, so that the
time step size ig\t = 0.01 s. It is important to recall that
nonlinear advective terms have been discretized by using
the Eulerian—Lagrangian approach. Consequently, for any
0> % the proposed method can be shown to be uncondi-
tionally stable [5], but the time step size has to be small
enough merely to resolve this short time scale.

The resulting time histories for pressure, artery radius
and axial velocity atz: = 0 are shown in Figure 5 at
four different locations, namely at the end of the ascend-
ing aorta, at the end of the right carotid, at the end of the
right subclavian and at the end of the right femoral artery

size At = t./N;. In Figure 3 the numerical results are (the precise locations are highlighted in Figure 4). Fig-

compared at the axial position= 0.75 with the Blasius  ure 6 shows some detailed velocity profiles calculated at
boundary layer solution. An excellent agreement betweenthe above locations. It can be seen that the velocity pro-
the two solutions can be observed. Moreover, because oftile in the ascending aorta is almost flat, due to the high
the radius adjustment, the inviscid core of the flow main- Reynolds number at this location, whereas the reduced
tains the prescribed inflow velocify, = 1 with good ac- Reynolds number in the smaller arteries yields velocity

curacy. profiles that are similar to the classical parabolic Hagen—
Poiseuille flow.

To validate the above results, the previous calculations
are systematically repeated with all parameters unchanged
except radial resolution that starts wiffi, = 1 (which

Simulating blood flow in large systemic arteries is a corresponds to a one—dimensional, sectionally averaged
challenging task usually tackled by one-dimensional mod- model) and goes up t&/, = 10, 100, 1000, and 10000.
els (see, e.g., [12, 16, 17]). In the present test a sim-The latter mesh ha¥, N, = 14,480, 000 control volumes
plified but realistic human arterial system is considered. and an extremely fine radial mesh size;, = 2 um. For
Here, advection, viscosity and wall elasticity are equally each mesh resolution Figure 7 (left) shows the cross sec-
important. This system contaii$ branches with varying  tion average velocity computed at the end of the ascending
lengths, rigidity coefficients, and equilibrium radii, as-d  aorta during the tenth cardiac cycle. A general good agree-
tailed in [16]. A sketch of the system is shown in Figure 4. ment can be observed and, in particular, convergence is
The overall system length 8341 m where the blood is  indicated by the velocity signals obtained with = 100,
assumed to be a Newtonian fluid with constant viscosity 1000 and 10000 that practically overlap. Hed¢e= 100
v =4.0-107%, according to [13]. used earlier, can be assumed to provide a sufficiently de-

Numerically, a periodic solution is generated from the tailed radial resolution. Moreover, the computed wave-
starting timet = 0 with initial conditionsu(zx, z,0) = 0 form, as well as the wave amplitudes are in good agree-

2.4 Application to a realistic model of the
human arterial system
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Figure 6: Selected velocity profiles during the tenth cardigcle in the ascending aorta (top left), in the right car¢top
right), in the right subclavian (bottom left) and in the rigémoral artery (bottom right).
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ment with the experimental results presented in [11]. For [7] V. Casulli, ‘A high-resolution wetting and drying al-

comparison, the simplified waveform of the experimental gorithm for free-surface hydrodynamic$nt. J. Nu-
results reported in [13] is shown on the right of Figure 7. mer. Meth. Fluids2009;60:391-408.

The above calculations have been performed on a lap- [8] V. Casulli and G.S. Stelling, ‘Semi-implicit subgrid
top with an Intel:7 CPU having2.80 GHz clock fre- modelling of three-dimensional free-surface flows’,
guency and GB of RAM. The problem size and the re- Int. Jour. for Numerical Methods in Fluid2011,;
quired computer time to complete one cardiac cycle for DOI: 10.1002/fld.2361.

different radial resolution are reported in Table 3. These [9] M. Dumbser, ‘Arbitrary high order PNPM schemes
results confirm that the proposed numerical method is very on unstructured meshes for the compressible Navier—
accurate, highly efficient and a good candidate for large— Stokes equations’,Computers & Fluids 2010;
scale simulations of the human cardio—vascular system. 39:60-76.
Conclusion [10] Y.C. Fung,Biomechanics: CirculationSecond edi-
OAC USI.O. SI' . hod Vi h . tion. Springer New York, Berlin, Heidelberg, 2010.
_sem|-|mp_|C|t metho for solving _t € governing [11] R.M. Nerem, W.A. Seed and N.B. Wood., ‘An exper-
equatlons OT axially symmetric, hydrostatic flows n cy!m— imental study of the velocity distribution and transi-
_dnqa] coordlnatgs has been presented_. The. com_blna_tlgn of tion to turbulence in the aortal, Fluid Mech. 1972;
judicious selection of terms that are discretized imgiicit 52:137-160
and use of an Eulerian-Lagrangian method for treating t,he[12] M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Peder-
advective terms mak_es_ the present fo_rmulanon st_able, sim- sen, A. Nadim, and J. Larsen, ‘Numerical simulation
ple and extremely efficient. The resulting method is locally and experimental validation of blood flow in arter-
and globally mass conservative. The computed results for ies with structured-tree outflow conditionginnals
different test problems verify the computational perfor- of Biomedical Engineering000;28:1281—1299
mance and the accuracy of the proposed algorithm. ,Th's[13] T.J. Pedley,The fluid mechanics of large blood ves-
model can potentially be used as one of the elements in fu- sels Cambridge University Press, Cambridge, 1980

ture interdisciplinary investigations at large scale,sidn [14] L. Prandtl. Uber Flissigkeitsbewegung bei sehr
ering a much more detailed model for the human cardio— kI.einer ReibungVerhandIg lll. Intern. Math. Kongr.

vascular system than the simplified test problem studied in Heidelberg pages 484491, 1904.

this paper. The method may also provide the basic hydro—[15] H. Schlichting and K. GersteBoundary—Layer The-
dynamic information needed for the simulation of transport ory. Springer, Berlin, 1999

processes, e.g. in the context of drug—delivery. [16] S.J. Sherwin, L. Formaggia, J. Reand V. Franke,

Acknowledgements ‘Computational modelling of 1D blood flow with
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ForschungsgemeinschaDFG) under theHeinz Maier— the simulation of wave propagation in the human
Leibnitzprogramme 2007. arterial system’Int. J. Numer. Meth. Fluids2003;
43.673-700.
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Figure 7: Left: Velocity signals in the ascending aorta categ during the tenth cardiac with varying radial resolutio
Right: Simplified experimental waveform according to Pgdli3].

Table 3: Model size and wallclock time needed for the sinioabf one cardiac cycle

Radial resolution

Number of control volumeS (V)

Computer time

N, =1 (1D model) 1,448
N, = 10 (2D model) 14,480
N, =100 (2D model) 144,800
N, = 1,000 (2D model) 1,448,000
N, = 10,000 (2D model) 14,480,000

0.35s
0.38s
1.40s
13.14s

278.00s
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