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Abstract
We present efficient algorithms for generating quality tetrahedral meshes for biological flow simulations starting from
low quality triangulations obtained from the segmentation of patient specific medical images. The suite of algorithms
that are presented in this paper have been implemented in the open-source mesh generator Gmsh [8]. This includes a
high quality remeshing algorithm based on a finite element disrcete parametrization and a volume meshing algorithm
with a boundary layer generation technique. In the result section, we show that the presence of a boundary layer mesh
plays an important role to reduce the problem size in cardiovascular flow simulations.
Keywords: Surface meshing, remeshing, harmonic map, boundary layer, quality mesh, numerical simulation

Introduction
In the biomedical field, the geometrical data acquired

via medical imaging techniques (CT or MRI) is often a tri-
angulation obtained directly from segmentation. This tri-
angulation is generally oversampled, of very low quality
and often with broken topology. Actually this is still a bot-
tleneck in the domain of biomedical computation. Indeed
creating high quality meshes is an essential feature for ob-
taining accurate and efficient numerical solutions of par-
tial differential equations that model the physiological sys-
tems. Unfortunately, those STL surface meshes are gen-
erally of too low quality to be directly used for numeri-
cal simulations. While many commercial packages offer
mesh generation options, these depend on high quality in-
put, which is rarely available when depending on image
segmentation results.

In this paper we first propose an efficient approach for
recovering a high quality surface mesh from a low quality
input (STL triangulation). The technique is based on dis-
crete finite element maps[17] with appropriate boundary
conditions. We discuss and compare two different types of
harmonic mappings : the Laplacian harmonic map and the
conformal map.

The proposed quality surface remeshing algorithm is
of high importance for subsequent three-dimensional bi-
ological flow simulations. Indeed, the surface triangula-
tion is most of the time taken as input for the tetrahedral
mesh generator (e.g. Delaunay, Frontal), which retains the
remeshed surface as the boundary of the resulting tetrahe-
dral mesh. Hence if the surface mesh contains low quality
triangles with small angles, the resulting tetrahedral mesh

might contain some degenerate tetrahedra with small vol-
umes and small dihedral angles. Those degenerate trian-
gles may lead to large interpolation errors, and have a neg-
ative effect on the convergence rate of the solution proce-
dure. The worst impact results in an unresolvable system
of equations.

In the context of biological flow simulations, another
important point concerns the generation of a mesh bound-
ary layer that is able to capture at the vicinity of the wall
derived quantities of clinical interest. While many authors
still use fully unstructured isotropic tetrahedral meshes,
these meshes are not efficient in terms of computational
time. Indeed, they require a huge number of elements in
order to have sufficiently small elements near the wall to
resolve the boundary layer and to be able to capture ac-
curately derived quantities such as WSS. Moreover, some
authors have reported that these meshes can produce spu-
rious fluctuations for the WSS [19, 21]. Boundary layer
meshes permit to capture those derived quantities accu-
rately while keeping for efficiency purposes a reasonable
number of mesh elements.

In the second part of this paper, we present an advanc-
ing layer method [6, 7, 9] that extrudes the lumen surface
mesh in the inward direction. The extruded prisms are then
subsequently split into tetrahedra and the remaining of the
lumen volume filled with tetrahedra.

An example of blood flow simulation with a remeshed
aortic arch is presented. The overall (re)meshing procedure
is implemented in the open-source mesh generator Gmsh
(www.gmsh.geuz.org)[8].
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Surface meshes
The remeshing technique we present is based on a dis-

crete parametrization of a given mesh patch S that is also
called discrete surface. We first assume we have auto-
matically split our initial triangulation into different mesh
patches that satisfy the three following conditions: have
zero genus, have a boundary that is made of at least one
closed curve, have a moderate geometrical aspect ratio (see
[12, 13] for more details). Next we compute for each patch
a finite element harmonic map, and then remesh the patch
in the parametric space using standard 2D mesh generators
with a prescribed mesh size field. Figure 1 shows both an
initial triangular mesh of S and its map onto the unit disk.
The surface S results from the segmentation of an anas-
tomosis site in the lower limbs, more precisely a bypass
of an occluded femoral artery realized with the patient’s
saphenous vein. The unit disk contains two holes that cor-
respond to the boundary of the femoral artery ∂S2 and the
saphenous vein ∂S3 on which we have imposed Neumann
boundary conditions.

Let us define now the discrete parametrization of a
mesh patch S with a conformal map. Parametrizing such a
patch S is defining a map u(x) (see Fig. 1):

x ∈ S ⊂ R3 7→ u(x) ∈ S′ ⊂ R2 (1)

that transforms continuously a 3D patch S into a patch S′

embedded in R2 that has a well known parametrization.
Two type of mappings are implemented: a harmonic map
and a least square conformal map.

A harmonic map minimizes distortion in the sense that
it minimizes the Dirichlet energy of the mapping u(x):

ED(u) =

∫
M

1

2
|∇u|2 ds. (2)

subject to Dirichlet boundary conditions u = uD on ∂Mi.
Harmonic maps are not in general conformal and do not
preserve angles but they are popular since they are very
easy to compute and are guaranteed to be one-to-one for
convex regions [3, 16].

The least square conformal map as introduced by Levy
at al. [11] asks that the gradient of u and the gradient of
v shall be as orthogonal as possible in the parametrization
and have the same norm. This can bee seen as an approxi-
mation of the Cauchy-Riemann equations. For a piecewise
linear mapping, the least square conformal map can be ob-
tained by minimizing the conformal energy:

ELSCM(u) =

∫
S

1

2

∣∣∇u⊥ −∇v∣∣2 ds, (3)

where ⊥ denotes a counterclockwise 90◦ rotation in S. For
a 3D surface with normal vector n, the counterclockwise
rotation of the gradient can be written as: ∇u⊥ = n×∇u.

In order to minimize the energy at a discrete level, we
assume the following finite element expansions for u =
{u, v}:

uh(x) =
∑
i∈I

uiφi(x) +
∑
i∈J

uD(xi)φi(x) (4)
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Figure 1 STL triangulation of an arterial anastomosis and its
map onto the unit circle (top) and mapped mesh on the unit
circle (bottom). As the geometrical ratio of the initial STL

triangulation is higher than 4, the mapped triangles become
very small (see zoom) in the parametric unit disk.

where I denotes the set of nodes of S that do not belong
to the Dirichlet boundary, J denotes the set of nodes of
S that belong to the Dirichlet boundary and where φi are
the linear nodal shape functions associated with the nodes
of the mesh. We assume here that nodal shape function
φi is equal to 1 on vertex xi and 0 on any other vertex:
φi(xj) = δij .

The two minimization problems then can then be
rewritten as a linear system to solve (see [14, 18]):(

A −C
−CT A

)
︸ ︷︷ ︸

LC

(
U
V

)
=

(
0
0

)
, (5)

where A is a symmetric positive definite matrix and C
is an antisymmetric matrix that are both built by assem-
bling the elementary matrices Akj =

∫
M
∇φk · ∇φj ds

and Ckj =
∫
M
n · (∇φk ×∇φj) ds, and the vectors U and

V denote respectively the vector of unknowns uk and vk.
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For the harmonic map, we have C = 0. The resulting ma-
trix LC is then symmetric definite positive such that the
linear system LCU = 0 can be efficiently solved using
a direct sparse symmetric-positive-definite solver such as
TAUCS 1.

It is necessary to impose appropriate boundary condi-
tions to guarantee that the discrete minimization problem
has a unique solution and that this unique solution defines
a one-to-one mapping (and hence avoids the degenerate so-
lution u =constant). Dirichlet boundary conditions are of-
ten used for the Laplacian harmonic map and the convex
combination map to map the boundary nodes of ∂M1 to a
unit circle:

uD(xi) = cos

(
2πli(xi)

L

)
, vD(xi) = sin

(
2πli(xi)

L

)
.

(6)

We have decided to map to a unit circle but all kind of con-
vex fixed boundaries could be considered since the map-
ping is proven to be one-to-one if the mapped surface is
convex [3, 16].

Instead of fixing all the boundary nodes ∂S1 to a con-
vex polygon, one might fix two (u, v) coordinates, thus
pinning down two vertices in the parameter plane with
Dirichlet boundary conditions. Indeed, for least square
conformal maps, the mapping (5) has full rank only when
the number of pinned vertices is greater or equal to 2 [11].
Pinning down two vertices will set the translation, rotation
and scale of the solution when solving the linear system
LCU = 0 and will lead to what is called a free-boundary
parametrization. It was independendty found by the au-
thors of the LSCM [11] and the DCP [1] that picking two
boundary vertices the farthest from each other seems to
give good results in general.

Volume meshes
We have implemented an advancing layer method [6,

7, 9] for the generation of boundary layers. Those bound-
ary layer meshes are attractive since they present high as-
pect ratio, orthogonal and possibly graded elements at the
wall. The method starts from a surface mesh on which a
boundary layer must be grown. From each surface node
a direction is picked for placing the nodes of the bound-
ary layer mesh. The direction is either computed using an
estimate to the surface normal at the node using Gouraud
shading, or specified directly as a three-dimensional vec-
tor field—obtained e.g. as the solution of a partial differ-
ential equation. The nodes are connected to form layers
of prisms that are subsequently subdivided into tetrahedra.
There technique is quite efficient in terms of computational
time but cannot guarantee that there will not be any over-
lap at tight corners. Therefore, the user has to take care to
produce elements of acceptable shape at sharp corners and
to prevent element overlap in regions of tight corners.

These boundary layer meshes can be built by extrud-
ing outward and inward the lumen surface. Then a three-

1http://www.tau.ac.il/˜stoledo/taucs/

dimensional Delaunay mesh generator is called to fill the
remaining of the lumen volume with isotropic tetrahedra.
Figure 2 shows an example of volume mesh with bound-
ary layers that is well suited for blood flow simulations in
compliant vessels.

It should be noted however that for realistic blood flow
simulations, the thickness of the viscous boundary layer
mesh and the mesh resolution for the inner tetrahedra are
often unknown prior to the computation. An effective ap-
proach to overcome this difficulty is to start from the pre-
defined boundary layer meshes as depicted in Fig. 2 and to
apply an adaptive procedure [5, 19, 20] where the distri-
bution of the spatial discretization errors are estimated and
controlled by modifying the mesh resolution. For example,
in the case of unsteady blood flow simulations, one could
rely the adaptation of the mesh size field on an Hessian
strategy [10] of the average flow speed over one cardiac
cycles [19, 20].

Figure 2 Magnified views of the boundary layer volume
mesh of an aneurysm. The white volume is a boundary layer

mesh of the arterial wall, and the red and yellow volumes
represent the arterial lumen. The yellow volume is the fluid

boundary layer mesh that is built in order to capture
accurately the wall shear stresses during the blood flow
simulations and the red volume is the remaining of the
lumen volume that is filled with isotropic tetrahedra.

Results
In this section, we first present two remeshing exam-

ples and compare the two different mapping techniques.
We compare timings as well as mesh qualities for the new
triangulations. The quality of the isotropic meshes is eval-
uated by computing the aspect ratio of every mesh triangle
as follows [8]:

κ = α
inscribed radius

circumscribed radius
= 4

sin â sin b̂ sin ĉ

sin â+ sin b̂+ sin ĉ
, (7)

â, b̂, ĉ being the three inner angles of the triangle. With
this definition, the equilateral triangle has κ = 1 and a flat
degenerated triangle has κ = 0.

In the fisrt example, we compare the remeshing of a hu-
man aorta with both the harmonic and the conformal map.
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As the geometrical aspect ratio of the triangulation is high,
the initial mesh has been automatically split by our algo-
rithm into two different mesh patches. The splitting has
been performed with our max-cut mesh partitioner based
on a multiscale Laplacian map [12]. As can be seen from
Fig. 3, the mapped meshes computed with the Laplacian
harmonic map present much more distortion close to the
boundaries. Again, as most of the planar meshers are more
efficient with less distorted meshes, we have that the qual-
ities of the resulting meshes are higher for the conformal
map. Indeed, for a radius dependent isotropic remeshing
of the aorta, we obtain a minimum quality of κmin = 0.04
for the harmonic map and κmin = 0.39 for the conformal
map. The mean quality is κ̄ = 0.91 for the harmonic map
and κ̄ = 0.96 for the conformal map. Here, a Frontal pla-
nar mesher was chosen for the remeshing in the parametric
space. The initial triangulation of the aorta contains 12000
triangles and the remeshing procedure for a new mesh of
5500 triangles took us less than 4s.

Figure 3 Remeshing of an STL triangulation of a human
aorta that has been split into two mesh patches (top).

Harmonic mapping (bottom left) and conformal mapping
(bottom right) for those two patches.

We further illustrate the capabilities of our algorithm
by showing the remeshing of airways models presented in
Figs.4 and 5. The presented algorithm is compared with
the meshing algorithm of Mimics. Mimics uses a two
step mesh adaptation strategy in order to optimize the ini-
tial STL triangulation: in a first step three iterations of
remeshing improve skewness to a minimal value of 0.4.

In this step the maximal edge length is set to 0.5mm
and the maximal geometrical error to 0.01mm. Here-
after a quality preserving triangle reduction is performed.
Again three iterations are done with a maximal edge length
set to 0.5mm and the maximal geometrical error set to
0.05mm. This provides the final remeshed model with
Mimics. In comparison, our technique relies on a mul-
tiscale partitioning of the airway models into two parts
of moderate geometrical aspect ratio. Each of those two
parts is then parametrized using a harmonic map and the
remeshing is then performed in the parametric plane using
standard 2D meshing algorithms (MeshAdapt, Delaunay
or frontal). As can be seen in Figs.4 and 5, the quality of
the meshes obtained with a remeshing procedure based on
a harmonic map is much higher than with the mesh adap-
tation strategies (such as the one implemented in Mimics).

a) b) c)

Figure 4 Remeshing of human lungs: a) part of the initial
STL triangulation, b) remeshed geometry with Mimics (after

2 steps) and c) remeshed lung based on the Harmonic
mapping remeshing procedure.
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Figure 5 Remeshing of human lungs with the presented
algorithm as compared with a commercial package such as

Mimics.

The next example studies the flow in a simplified aortic
arch. The STL triangulation was found on the INRIA web
site2. The STL surface mesh has been remeshed using the
presented techniques based on conformal maps. The ini-
tial STL has a mean quality of κ̄ = 0.39, while the new
surface mesh has κ̄ = 0.94. Accurate and converged nu-
merical simulations are mandatory since it has been shown
that the flow patterns and the locations of low wall shear

2http://www-c.inria.fr/Eric.Saltel/saltel.php
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stress (WSS) correspond with locations of aneurysm for-
mation in the descending aorta [15, 22]. The wall shear
stress is defined as the norm of the shear stress at the wall:

WSS = ‖~tw‖ = ‖~t− (~t · ~n) · ~n)‖, (8)

with ~t = µ
(
∇~u+∇~uT

)
· ~n.

For the numerical simulation, we apply simple bound-
ary conditions: a parabolic velocity profile at the inlet
(heart) and zero natural pressure boundary conditions at
the outlets (innominate artery, left common carotid artery,
left subclavian artery and descending aorta) and a zero ve-
locity (no-slip) on the vessel walls. We consider a sta-
tionary flow at Reynolds Re = 450 and different meshes:
isotropic volume meshes of respectively 28K, 160K and
466K tetrahedra and an adapted anisotropic mesh that has
approximately 20K. We fist compute an isotropic sur-
face mesh with our remeshing algorithm and then produce
two different types of volume meshes: (i) isotropic vol-
ume meshes of different prescribed mesh sizes, (ii) adapted
anisotropic volume meshes and (ii) a boundary layer mesh
obtained by extrusion of the surface mesh over a number of
layers (5 layers in the boundary δbl = 1/

√
Re). Adaptive

refinement in the boundary with either anisotropic metric
fields or boundary layers is indeed attractive [2, 19, 21]
to increase the solution accuracy in the region of interest
(at the wall) and this way decrease the load on the solver
by reducing the number of finite elements used. With the
presented approach of harmonic map, we do have a para-
metric description of the initial triangulation that enables
us to use anisotropic mesh adaptation libraries such as our
open source MadLib library [4]. This library aims at mod-
ifying the initial mesh to make it comply with criterions on
edge lengths and element shapes by applying a set of stan-
dard mesh modifications (edge splits, edge collapses and
edge swaps, etc.). An anisotropic field based on the dis-
tance to the wall and the curvature can then be defined in
order to generate boundary layer meshes. In the example
presented in Fig.6c), we prescribe a small size with a linear
growth in the normal direction to the wall, and three times
a larger size is prescribed in the tangent directions. The
final mesh metric field is built from those resulting sizes
and directions. It should be noted that a volume mesh was
also produced from the STL triangulation but this volume
mesh was of too low quality to obtain a convergence of the
numerical simulation (γmin = 1.5e−5 and γ̄ = 0.45).

Figure 6 shows the initial STL triangulation, a
remeshed isotropic surface mesh, and a mesh cut of the
volume anisotropic mesh. As can be seen, initial STL tri-
angulation is faceted and the horizontal structure of the CT
slices are visible.

Figure 7 shows the WSS values computed for different
meshes at sectionA−A′. We selected sectionA−A′ since
this section intersects the regions of low and high WSS.
For this section, the WSS values vary in the azimuthal
direction, the zero angle corresponding to the location
A′. As can be seen in Fig.7, the high quality isotropic
volume meshes converge well towards an azimuthal WSS

View b),c)

View
b),c)

a) b) c)

Figure 6 Aortic arch meshes: a) Initial STL triangulation
(top) and remeshed surface (isotropic mesh size), b)

Anisotropic volume mesh cut created from the remeshed
surface with MAdLib, c) Boundary layer volume mesh.
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Figure 7 Blood flow simulation in an aortic arch. The left
figure shows the WSS distribution and the right figure the

WSS along the circumference at section A−A′ for different
meshes for a constant inlet flow rate. The zero angle

corresponds to the location A′.

distribution. The WSS for the anisotropic mesh exhibits
more numerical noise that is due to the velocity gradient
computations involved in (8) that are less accurate for
highly anisotropic meshes [2, 19, 21]. Meanwhile, the
mean values (max and min WSS) converge towards the
one obtained with the finest isotropic mesh within a
smaller computational time (mesh of only 20K). The
boundary layer volume mesh provides less oscillatory
results and show also convergence towards the finest
isotropic mesh for a reduced number of elements (50K
versus 1.4M tetrahedra).

Conclusions
In this work, we have presented a fully automatic open

source approach to recover a high quality surface and vol-
ume mesh from low-quality oversampled inputs (STL files)
obtained via 3D acquisition systems. The approach is orig-
inal as it combines an efficient and robust parametrization
technique based on harmonic maps [17]. With the present
approach, we are able to remesh any surface with any topo-
logical genus and with large geometrical aspect ratio such
as arteries. We showed that the remeshing procedure is
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highly efficient and produces high-quality meshes that are
suitable for finite element biological flow simulations.
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généralisant la représentation conforme et défininie
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