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ABSTRACT

Phenomenal advances in the computational fluid dynamiost the past few decades, have rev-
olutionised and greatly benefited areas like bio-mediciwwbere accurate flow simulation leads
to new and better insight into the surgical procedures andptiimum design of modern medical
gadgets. In this paper, a free floating boundary approaclseéd to solve the conventional laminar
compressible boundary layer equations, which simulateflttve of a viscous liquid in very small
channels, using an efficient implicit finite difference stieecalled the Keller's box scheme, with
appropriate slip boundary conditions at the wall. This apph leads to very accurate solutions and the
estimation of wall shear stress and heat transfer distoibwiong the length of the channel. These are
useful in the design of micro devices like Lab-on-Chip dregwery system and blood flow simulation
through heart and veins and many other applications whergifhflow assumption is reasonably valid.

Keywords. Blood flow simulation, laminar flow with wall slip, Keller's & scheme, Nonlinear
boundary-value problems, Free boundary formulation.

1 Introduction

Recent developments in the computational fluid dynamic kitimns have a profound and beneficial
impact on several other disciplines like medicine and Ilgjgldesides aeronautical and aerospace ap-
plications. For example, the conventional methods of syrged treatment have given way to the most
sophisticated modern procedures using the latest avaitaishputer simulation tools. It is well known
that cardiovascular disease is the major cause of a largdewai deaths in the present day world
[1]. The understanding, diagnosis and treatment of theadesdeavily relies on the study and analy-
sis of cerebral blood flow behavior. Major problems are tiawethe anomalous blood flow pattern in
the neighborhood of critical bifurcations within the bré@ading to strokes for instance. Experimental
studies are often impractical in such situations. Datah Istatic and dynamic are normally acquired
by computer tomography (CT) or three dimensional rotatiangiography (3DRA). Not withstanding
these useful practical technologies in measurements, lingdend flow simulations are now playing
a major role in the proper administration of the treatmenicpdures. The limitations that are inher-
ent in experimental techniques, are, to a large extent cermgaited by flow simulations. Nowadays
entire brain neurovasculature blood flow simulations amssiibe which ably supports the clinical neu-
rosurgery. This capability offers the clinician the podgipbof performing non-invasive, patient specific
simulations experiments in a virtual mode and in real tintés helps to study and analyse in advance



the effect of a particular or alternative course of surgorakedures with no implied danger or risk to the
patient. This also gives support for diagnosis and ther@pgulations also offer the unique prospects
of gaining useful insights into the poorly understood bldlod patterns even in the normal brain. Fig-
ure 1 shows a real time system for blood flow analysis congjstf MRI, CT, X-ray data acquisition,
creation of 3D model and interactive flow visualisation.
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Figure 1: System for real time anlysis of blood flow.

Conventional three dimensional Computational Fluid Dyitancodes, which basically rely on contin-
uum flow assumption, solve the basic governing equationgiéia Stokes) by numerical techniques
like finite element, finite volume and finite difference methavith appropriate boundary conditions
for the given flow geometry. The shear stresses and presmtiidutions are calculated from the flow
velocity and temperature fields, which are obtained as p#necsolution. For complex applications like
blood flow mapping, there is a need to utilize scalable higtiop@mance parallel computing systems
running on Linux operating systems, to get the simulaticults in near real time mode. To overcome
these limitations of super computer class resource rageints, there is a need to use less sophisticated
flow models without sacrificing the accuracy. In this conteixthly accurate solutions with boundary
layer assumptions and appropriate wall velocity and teatpeg slip boundary conditions can be of-
ten used. In cases where the continuum flow assumptionssdeakn, free molecular approach using
Lattice - Boltzmann method is used, which also requires tipeiscomputing systems.

2 Formulation of the Problem

2.1 Governing Equations

The conventional two dimensional, laminar, compressibbeindary layer fluid flow under slip
conditions at low Mach numbers is considered. It is govelmethe following fundamental boundary
layer equations.
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where P, T, p, v, o, andc, refer to the pressure, temperature, density, kinematwosigy, thermal
diffusivity and specific heat, respectively. The positiveoordinate is measured along the surface and
the positive y-coordinate is measured normal to the x-axihé outward direction towards the fluid.
The velocity components along the x-axis and y-axisuiea@dv respectively. The velocity gradients in
the x-direction are small compared to velocity gradienthéy-direction.

2.2 dlip Effects

For nearly over a hundred years, scientists and enginegesdpplied the classicalo-slip boundary
condition, for fluid flow over a solid surface. While this cdéteh has been validated experimentally
for a number of macroscopic flows, it still remains assumptiorand is not based on sound physical
reasoning. In fact two hundred years ago, Navier himselpgsed, a more general boundary condition
which includes the possibility of fluid slip at a solid sua¢ie proposed that at the solid boundary the
velocity is proportional to the shear rate at the surface,

du
Uflyid = A < dy) (4)

whereu ;.54 iS the fluid velocity at the solid surface andefers to theslip coefficienthaving a length
scale asillustrated in Figure 2. In this equatiotan be interpreted as fictitious length below the surface,
at which the normal slip boundary conditions apply. For @mtionalno-slip condition A = 0. If A is
finite, its effect depends on the scale of the flow.
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Figure 2: Generalised slip flow boundary condition at a sslidace

2.3 Transformed Equations

Analysis of the flow is simplified by using the following bowarg layer coordinate; and non-
dimensional stream functiofi. [2]

n=y L:O; (5)
o
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A governing equation for the non-dimensional stream fumcii can be found by substituting these
non-dimensional terms into the x-momentum equation (2):

" +05ff =0 7)



The slip boundary conditions are,

fn=10)=0 (8)
f'(n=0)=K1f(0) ©)
whereK1 is the slip coefficient, which is introduced by rewriting @tjon (4), defined for liquids by:
_ (2 12
K1= (Rey) (10)
T
fl(n—o0)=1 (12)

The temperature in the equation (3) is non-dimensionaksgd

T-T,

h=_— "
T — Ty

(12)
whereT,, is the free stream temperature dfglis the surface temperature.

Using the non-dimensionalisation used for the fluid flow ¢igus, and the non-dimensional tempera-
ture, the heat equation becomes:

0" +0.5Pr (9/ F-0 f/) ~0 (13)
wherePr is the Prandtl number of the liquid. The boundary condit®n i
O(n=o00)=1 (14)

For the case of constant heat flux, the non-dimensional teatyyre becomes [3],

- —® 1/2
") = o) )
with associated boundary conditions:
0'(n="0)=-1 (16)
O(n=00)=0 a7)

3 TheFreeBoundary Approach

Boundary value problems on infinite intervalsoo, co) arise in several branches of science and engi-
neering. A classical numerical approach of these problertsrieplace the original problem by the one
defined on a finite interval, sdy, x|, wherea is the truncated boundary corresponding-tso and
T IS @ truncated boundary corresponding<td4]. Assuminga is finite, the original problem is solved
by comparing the numerical results obtained for severalegabfz.,. The value ofr., is varied until
the computed results stabilize, at least, to a preferrecoeunnrf significant digits. However, a truncated
boundary allowing for a satisfactory accuracy of the nunaolution has to be determined by the trial
and error, and this seems to be the major drawback of theedhspproach. In order to overcome this
difficulty, a different approach is formulated, in which tliee boundary or the truncated boundary is
treated as an unknown variable and is determined as pam gbthtion. This eliminates the uncertainty
related to the choice of the truncated boundary in the daksieatment of boundary value problems
defined on infinite intervals.



The general boundary value problem on an infinite intervekefined as,

Y —ty). relnod (18)
with the associated boundary conditions:

g(y(a),y(c0)) =0 (19)

wherey () is an-dimensional vector witly; (x) forl = 1,...,n as components and oo are the lower
and upper boundaries respectivelyu Ik a finite value, then it denotes that the boundary valuelenob
is defined on an semi-infinite interval. Since we are intraaly@n upper boundary as a variable, it is
necessary to introduce one more boundary condition. Werasthat the additional boundary condition
is available as,

h(y(a),y(o0)) =0 (20)

Then the free boundary formulation of equation (18),(19) &0) is given as,

dy

i f(z,y), z¢€la,z] (22)
g(y(a;e), y(ze5¢)) =0 (22)
h(y(ase), y(ze;e)) =€ (23)

where0 < |e| < 1, the solution of equation (21) depends arthat isy(x;<). Herey(z;¢) is an
approximation toy(z) on [a, z], andz. is unknown. If we set = 0, then(y(x), o) is a solution of
equation (21). Each solutiop(x) of equation (18) ang/(z; <) of equation (20) arésolatedat least
in a neighborhood of = 0. Furthermorey. is a differentiable function of on a neighborhood, of

e = 0 and that the limit ofdz./de ase goes to zero exists. If all the componentsydf:; ) and of
(dy/de)(x;€) are continuous functions on the doméinz.] x I, then the solution of equation (20)
converges uniformly to the solution of equation (18)sdends to zero.

Using =, as the(n + 1) component of the vectoy. (i.€)y,.1 = ., a new independent
variable is defined as follows to map the regjanz| into [0,1],

~ (n—a)
Sl s (e4)

Then the original boundary value problem given by equati@) {s how transformed to,

dY
5= F(z,Y), zel0,1] (25)
with the associated boundary condition:
G(Y(0), Y(1)) =0 (26)
where we have defined
Y (2) = (y(2), ynt1)” (27)
F(z,Y) = ((ynt1 — O)F((yns1 — @)z + a,y), 0)7 (28)

G(Y(0), Y (1)) = (g(y(0),¥(1)), ~(y(0), (1)) — )" (29)



4 Keéler'sBox Scheme

In the present work, an efficient implicit finite differencestnod, called the Keller's box scheme, orig-
inally developed by Keller, has been applied to solve equnati(7) and (13) subject to the boundary

conditions (8),(9),(11) and (14). The system of equatiahsafd (13) is reduced to a system of first-
order equations by defining new variables:

f=une (30)
U = VUnog (31)
v = —fons (32)
0" = 01700 (33)
0, = —Prf0ines (34)
Mo =0 (35)

Equations (30)-(35) can be put in the following general form

Q; = Gi(fvuvvaeaelvnOO); v = 1727 76 (36)

whereQ is defined as,
Q = Q(f:uav797917n00) (37)
The boundary conditions (8),(9),(11) and (14) can also hémpilne general form as follows.

Qi(0) =C; (38)
where i=1,2,4 for a prescribed wall temperature case an@,j5for a prescribed wall heat flux case.
Qim. (?700) = Cim. (39)

where m=1,2,3 such that = 2, i, = 3, i3 = 4. The additional boundary condition which is imposed
is thatv becomes withire (ideally zero) at the boundary layer edge. Here the boundangitions at
Mo are written with a subscript,,, in order that the variables specifiedrat= 0 andn = 7., may not

be disjoint. The regioi) to 7., is now divided into(J — 1) steps. The step size for equal spacing is
given by,

An =1 /(T — 1) (40)
whereJ is the number of grid points in the basic net. On the net chasabove, let us define
1
Njs1/2 = 5 (15 +0541) (41)
and for any general net functidd,,
X 1 . .

Differencing equation (36) at; 2, We get,

. A . .
Q" -ql= "Gl + G (43)



The differencing is done at the cell cenfret 1/2) so that the finite differencing scheme retains second
order accuracy even on non-uniform grids. We writeg@riteration

Q?(Q-I—l) _ Q{(‘Z) + 5Qg(¢1) (44)
and insert in equation (43) and neglecting higher om}(‘”:

5QUTVE) _ 5qi@ _ AQ”(Gg'(q) L QU@ i@, o g

j=12,...,]
g=0,1,2... (45)
where
Fi@ — _ <Q§j+1><q> _ Qg@)) n % (GI@ 4 gl

AN (= G (111)@) s (4 D)@ , N OC () s ia)
-5 (; ool e, +;6Q|i Q] (46)

Let us define the vectors
0Q; = (6f,0u,0v,60,01, 6n) (47)

wheredQ; is the increment vector. Now the equation (45) can be putarfdhowing form.

R;0Q; —S;0Q; = P; (48)
where,
Pj = (Fl,FQ,...7F6)j (49)

It may be observed that equation (45) for the increment v¢é(@;) is linear even though the governing
equations are non linear. This can be solved by putting tbatexn (48) in the block tridiagonal form
A = LU and solved by Thomas algorithm [5]. Thus the increment ved®®; having the increments
of all the variables, equation (47), is determined provitiesl initial profiles of all the variables are
specified. It is to be noted that these profiles are to be densiwith the known boundary conditions.
The increment is then added to the initial solution. The essds repeated until the maximum value
of the incremental vectofdQ;,| is less than a prescribed tolerance, (d8y°). Provided that the
initial profiles are close to the true solution, the aboveaiige process is quadratically convergent and
unconditionally stable on arbitrary nets. In the presesecto initiate the process, initial guesses for
the velocity and thermal fields were taken as linear profiléls w,, = 4. Thus

f=n"/2n (50)
f=n/n% (51)
f” =0.1 (52)

0=f (53)
0 =t (54)

The extra boundary condition that is needed for this metHiablution is taken as shear stress at the
boundary layer edge.

[v(Neo)| = |f”(77<>o)| =€ (55)



5 Resaultsand Discussions

The free boundary technigue has been used to solve the enmdfi)-(3) for various values df 1
and Pr. The location of the free boundary (boundary layerkedy all the cases has been found
automatically by the solution procedure as part of the gmiulepending on a prescribed accuracy
The present results are compared with values obtained [B]rbf Yazdi et al.

Figure 3 and 4 show the non-dimensional velocity at the wak &nction ofK 1 for Pr = 1.0. The
agreement with results of ref [3] is good. R6A= 0 the classical Blasius value of 0.332 is obtained for
the wall shear. Results of ref [3] indicate this value as B.8Btained by shooting method with a fixed
value (7 ) of 5. This clearly demonstrates the superiority of the freerfdary technique. From section
(2.2), we observed that the zero slip coefficient correspaadhe no slip condition. Consequently, the
velocity at the wall must be equal to zero. It is clear from fiigeire 3 that the non-dimensional wall
velocity becomes zero as the slip coefficient approachesahe of zero. It is also clear that as the
slip coefficient increases from zero, the fluid velocity sases at the wall.
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Figure 3: Non-dimensional wall velocity as a functionkofi.

Figures 5 and 6 show the variation of velocity and shear sirethe boundary layer as a function of
7n. These profiles also show good agreement and correct trEigise 7 and 8 show the variation of
wall temperature andvu as a function oK 1. It is observed that the non-dimensional slip coefficient
increases the heat flux. TBéu number obtained presently show considerable variatiotisttwbse ob-
tained by shooting method of ref [3]. Figure 9 shows thatealfi),, as a function ot. It demonstrates
the fact that as the accuracy is tightened (sma)le¢he value ofy, increase asymptotically. So when
the value ofn,, is fixed, it is difficult to get more accurate results if theualof n, is less than the
value which is required to maintain a small value:oT his explains the fact behind the value of 0.322
which is obtained instead of 0.332 when the valuggfis fixed as 5 in ref [3].

As per the boundary conditioﬁ'(o) = KI1f ”(O) and the present method satisfies this exactly over the
entire range of'1 studied. This is illustrated in the figure (10), which showslet of f'(0)/f" (0)

.vs. K'1 which should ideally be a straight line. In contrast, theultssof Ref [3], does not corroborate
this except for smaller values @&f 1 and that too only approximately. Thus the free adaptive dagn
technique is seen to be more robust.
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Figure 5: Non-dimensional velocity as a functionof
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Figure 6: Non-dimensional shear stress as a function of
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6 Conclusions

A new free floating boundary approach is used to solve theardional laminar compressible boundary
layer equations. This approach solves the flow of viscougdgjin micro channels, using an efficient
implicit finite difference scheme called the Keller's boxheme, with appropriate slip boundary con-
ditions applied at the wall. Since the free boundary apgrazdatains the truncated boundary as part of
the solution, it eliminates the uncertainty associateth wie choice of the free boundary in solving the
boundary value problems defined on infinite intervals. Thaiakd results show that an increase in slip
coefficient tends to increase the fluid velocity and redueenthll shear stress. It is also observed that
the reduction of velocity gradient leads to the reductiobaindary layer thickness with the increase in
slip coefficient. The heat flux and local Nusselt number asepled to have an increased value as the
slip coefficient and Prandtl number tend to have a higherevdlis also observed that the wall tempera-
ture is reduced by the increase of slip coefficient and Prandbber. It is seen that increase in accuracy
levels increases the location of the infinite boundary aggtigally as expected. This approach enables
less sophisticated maodels to be used for getting accuratdosts in practical applications where near
real time simulations are needed.

References

[1] Zasada, S. & Coveney, P., Computational biomedicines fidie of workflow tools.International
Conference on Computational Sciences, ICCS 22000.

[2] Martin, M.J. & Boyd, I.D., Stagnation-point heat traashear the continuum limiTechnical notes,
AIAA Journal, Vol 47, Nolpp. 283-285.

[3] M H Yazdi, I.H.A.Z., S Abdullah & Sopian, K., Friction anldeat transfer in slip flow boundary
layer at constant heat flux boundary conditiomathematical methods, computational techniques,
non-linear systems, intelligent systems, ISBN:978-96001.2-3 pp. 207-213, 1990.

[4] Fazio, R., A free boundary approach and keller’s box swddor bvps on infinite intervaldnter-
national journal of computer mathematics, Vol80, Nod@. 1549-1560, 2003.

[5] Balu, R., An application of keller's method to the soturti of an eigth-order nonlinear boundary
value problemInt journal for numerical methods in engineering, Volpp. 1177-1186, 1980.



