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ABSTRACT

Phenomenal advances in the computational fluid dynamics, over the past few decades, have rev-
olutionised and greatly benefited areas like bio-medicine,where accurate flow simulation leads
to new and better insight into the surgical procedures and ofoptimum design of modern medical
gadgets. In this paper, a free floating boundary approach is used to solve the conventional laminar
compressible boundary layer equations, which simulate theflow of a viscous liquid in very small
channels, using an efficient implicit finite difference scheme called the Keller’s box scheme, with
appropriate slip boundary conditions at the wall. This approach leads to very accurate solutions and the
estimation of wall shear stress and heat transfer distribution along the length of the channel. These are
useful in the design of micro devices like Lab-on-Chip drug delivery system and blood flow simulation
through heart and veins and many other applications where the slip flow assumption is reasonably valid.

Keywords: Blood flow simulation, laminar flow with wall slip, Keller’s Box scheme, Nonlinear
boundary-value problems, Free boundary formulation.

1 Introduction

Recent developments in the computational fluid dynamic simulations have a profound and beneficial
impact on several other disciplines like medicine and biology, besides aeronautical and aerospace ap-
plications. For example, the conventional methods of surgery and treatment have given way to the most
sophisticated modern procedures using the latest available computer simulation tools. It is well known
that cardiovascular disease is the major cause of a large number of deaths in the present day world
[1]. The understanding, diagnosis and treatment of the disease heavily relies on the study and analy-
sis of cerebral blood flow behavior. Major problems are traced to the anomalous blood flow pattern in
the neighborhood of critical bifurcations within the brainleading to strokes for instance. Experimental
studies are often impractical in such situations. Data, both static and dynamic are normally acquired
by computer tomography (CT) or three dimensional rotational angiography (3DRA). Not withstanding
these useful practical technologies in measurements, modeling and flow simulations are now playing
a major role in the proper administration of the treatment procedures. The limitations that are inher-
ent in experimental techniques, are, to a large extent complemented by flow simulations. Nowadays
entire brain neurovasculature blood flow simulations are possible which ably supports the clinical neu-
rosurgery. This capability offers the clinician the possibility of performing non-invasive, patient specific
simulations experiments in a virtual mode and in real time. This helps to study and analyse in advance



the effect of a particular or alternative course of surgicalprocedures with no implied danger or risk to the
patient. This also gives support for diagnosis and therapy.Simulations also offer the unique prospects
of gaining useful insights into the poorly understood bloodflow patterns even in the normal brain. Fig-
ure 1 shows a real time system for blood flow analysis consisting of MRI, CT, X-ray data acquisition,
creation of 3D model and interactive flow visualisation.

Figure 1: System for real time anlysis of blood flow.

Conventional three dimensional Computational Fluid Dynamics codes, which basically rely on contin-
uum flow assumption, solve the basic governing equations (Navier - Stokes) by numerical techniques
like finite element, finite volume and finite difference methods with appropriate boundary conditions
for the given flow geometry. The shear stresses and pressure distributions are calculated from the flow
velocity and temperature fields, which are obtained as part of the solution. For complex applications like
blood flow mapping, there is a need to utilize scalable high performance parallel computing systems
running on Linux operating systems, to get the simulation results in near real time mode. To overcome
these limitations of super computer class resource requirements, there is a need to use less sophisticated
flow models without sacrificing the accuracy. In this contexthighly accurate solutions with boundary
layer assumptions and appropriate wall velocity and temperature slip boundary conditions can be of-
ten used. In cases where the continuum flow assumptions breaks down, free molecular approach using
Lattice - Boltzmann method is used, which also requires the super computing systems.

2 Formulation of the Problem

2.1 Governing Equations

The conventional two dimensional, laminar, compressible boundary layer fluid flow under slip
conditions at low Mach numbers is considered. It is governedby the following fundamental boundary
layer equations.
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whereP , T , ρ, ν, α, andcp refer to the pressure, temperature, density, kinematic viscosity, thermal
diffusivity and specific heat, respectively. The positive x-coordinate is measured along the surface and
the positive y-coordinate is measured normal to the x-axis in the outward direction towards the fluid.
The velocity components along the x-axis and y-axis areu andv respectively. The velocity gradients in
the x-direction are small compared to velocity gradients inthe y-direction.

2.2 Slip Effects

For nearly over a hundred years, scientists and engineers have applied the classicalno-slip boundary
condition, for fluid flow over a solid surface. While this condition has been validated experimentally
for a number of macroscopic flows, it still remains anassumptionand is not based on sound physical
reasoning. In fact two hundred years ago, Navier himself proposed, a more general boundary condition
which includes the possibility of fluid slip at a solid surface. He proposed that at the solid boundary the
velocity is proportional to the shear rate at the surface,

ufluid = λ

(

du

dy

)

s

(4)

whereufluid is the fluid velocity at the solid surface andλ refers to theslip coefficienthaving a length
scale as illustrated in Figure 2. In this equationλ can be interpreted as fictitious length below the surface,
at which the normal slip boundary conditions apply. For conventionalno-slip conditionλ = 0. If λ is
finite, its effect depends on the scale of the flow.

Figure 2: Generalised slip flow boundary condition at a solidsurface

2.3 Transformed Equations

Analysis of the flow is simplified by using the following boundary layer coordinateη and non-
dimensional stream functionf . [2]

η = y

√

u∞
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Ψ√

νxu∞
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A governing equation for the non-dimensional stream function f can be found by substituting these
non-dimensional terms into the x-momentum equation (2):

f ′′′ + 0.5ff
′′

= 0 (7)



The slip boundary conditions are,
f(η = 0) = 0 (8)

f
′

(η = 0) = K1f
′′

(0) (9)

whereK1 is the slip coefficient, which is introduced by rewriting equation (4), defined for liquids by:
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)

(Rex)1/2 (10)

f
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The temperature in the equation (3) is non-dimensionalisedas,

θ =
T − Tw

T∞ − Tw
(12)

whereT∞ is the free stream temperature andTw is the surface temperature.
Using the non-dimensionalisation used for the fluid flow equations, and the non-dimensional tempera-
ture, the heat equation becomes:

θ
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+ 0.5Pr
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)

= 0 (13)

wherePr is the Prandtl number of the liquid. The boundary condition is,

θ(η = ∞) = 1 (14)

For the case of constant heat flux, the non-dimensional temperature becomes [3],

θ(η) =
T − T∞

(q
′′

wx/k∞)
Re1/2 (15)

with associated boundary conditions:
θ
′

(η = 0) = −1 (16)

θ(η = ∞) = 0 (17)

3 The Free Boundary Approach

Boundary value problems on infinite intervals(−∞,∞) arise in several branches of science and engi-
neering. A classical numerical approach of these problems is to replace the original problem by the one
defined on a finite interval, say[a, x∞], wherea is the truncated boundary corresponding to−∞ and
x∞ is a truncated boundary corresponding to∞ [4]. Assuminga is finite, the original problem is solved
by comparing the numerical results obtained for several values ofx∞. The value ofx∞ is varied until
the computed results stabilize, at least, to a preferred number of significant digits. However, a truncated
boundary allowing for a satisfactory accuracy of the numerical solution has to be determined by the trial
and error, and this seems to be the major drawback of the classical approach. In order to overcome this
difficulty, a different approach is formulated, in which thefree boundary or the truncated boundary is
treated as an unknown variable and is determined as part of the solution. This eliminates the uncertainty
related to the choice of the truncated boundary in the classical treatment of boundary value problems
defined on infinite intervals.



The general boundary value problem on an infinite interval isdefined as,

dy

dx
= f(x,y), x ∈ [a,∞] (18)

with the associated boundary conditions:

g(y(a),y(∞)) = 0 (19)

wherey(x) is an-dimensional vector withyl(x) for l = 1, . . . , n as components anda,∞ are the lower
and upper boundaries respectively. Ifa is a finite value, then it denotes that the boundary value problem
is defined on an semi-infinite interval. Since we are introducing an upper boundary as a variable, it is
necessary to introduce one more boundary condition. We assume that the additional boundary condition
is available as,

h(y(a),y(∞)) = 0 (20)

Then the free boundary formulation of equation (18),(19) and (20) is given as,

dy

dx
= f(x,y), x ∈ [a, xε] (21)

g(y(a; ε), y(xε; ε)) = 0 (22)

h(y(a; ε), y(xε; ε)) = ε (23)

where0 < |ε| ≪ 1, the solution of equation (21) depends onε, that isy(x; ε). Herey(x; ε) is an
approximation toy(x) on [a, xǫ], andxε is unknown. If we setε = 0, then(y(x),∞) is a solution of
equation (21). Each solutiony(x) of equation (18) andy(x; ε) of equation (20) areisolatedat least
in a neighborhood ofε = 0. Furthermore,xε is a differentiable function ofε on a neighborhoodIo of
ε = 0 and that the limit ofdxε/dε asε goes to zero exists. If all the components ofy(x; ε) and of
(dy/dε)(x; ε) are continuous functions on the domain[a, xε] × Io, then the solution of equation (20)
converges uniformly to the solution of equation (18), asε tends to zero.

Using x∞ as the (n + 1)th component of the vectory. (i.e).yn+1 = xε, a new independent
variable is defined as follows to map the region[a, x∞] into [0,1],

z =
(η − a)

(yn+1 − a)
(24)

Then the original boundary value problem given by equation (18) is now transformed to,

dY

dz
= F(z,Y), z ∈ [0, 1] (25)

with the associated boundary condition:

G(Y(0), Y(1)) = 0 (26)

where we have defined
Y(z) ≡ (y(z), yn+1)

T (27)

F(z,Y) ≡ ((yn+1 − a)f((yn+1 − a)z + a,y), 0)T (28)

G(Y(0),Y(1)) ≡ (g(y(0),y(1)), h(y(0),y(1)) − ε)T (29)



4 Keller’s Box Scheme

In the present work, an efficient implicit finite difference method, called the Keller’s box scheme, orig-
inally developed by Keller, has been applied to solve equations (7) and (13) subject to the boundary
conditions (8),(9),(11) and (14). The system of equations (7) and (13) is reduced to a system of first-
order equations by defining new variables:
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= −fvη∞ (32)
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′
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Equations (30)-(35) can be put in the following general form.

Q
′

i = Gi(f, u, v, θ, θ1, η∞); i = 1, 2, ..., 6 (36)

whereQ is defined as,
Q = Q(f, u, v, θ, θ1, η∞) (37)

The boundary conditions (8),(9),(11) and (14) can also be put in the general form as follows.

Qi(0) = Ci (38)

where i=1,2,4 for a prescribed wall temperature case and i=1,2,5 for a prescribed wall heat flux case.

Qim(η∞) = Cim (39)

where m=1,2,3 such thati1 = 2, i2 = 3, i3 = 4. The additional boundary condition which is imposed
is thatv becomes withinǫ (ideally zero) at the boundary layer edge. Here the boundaryconditions at
η∞ are written with a subscriptim, in order that the variables specified atη = 0 andη = η∞ may not
be disjoint. The region0 to η∞ is now divided into(J − 1) steps. The step size for equal spacing is
given by,

∆η = η∞/(J − 1) (40)

whereJ is the number of grid points in the basic net. On the net chosenas above, let us define
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1
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Differencing equation (36) atηj+1/2, we get,
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The differencing is done at the cell centre(j+1/2) so that the finite differencing scheme retains second
order accuracy even on non-uniform grids. We write forqth iteration
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Let us define the vectors
δQj = (δf, δu, δv, δθ, δθ1 , δη∞) (47)

whereδQj is the increment vector. Now the equation (45) can be put in the following form.

RjδQj − SjδQj = Pj (48)

where,
Pj = (F1,F2, . . . ,F6)j (49)

It may be observed that equation (45) for the increment vector (δQj) is linear even though the governing
equations are non linear. This can be solved by putting the equation (48) in the block tridiagonal form
A = LU and solved by Thomas algorithm [5]. Thus the increment vector δQj having the increments
of all the variables, equation (47), is determined providedthe initial profiles of all the variables are
specified. It is to be noted that these profiles are to be consistent with the known boundary conditions.
The increment is then added to the initial solution. The process is repeated until the maximum value
of the incremental vector|δQj | is less than a prescribed tolerance, (say10−6). Provided that the
initial profiles are close to the true solution, the above iterative process is quadratically convergent and
unconditionally stable on arbitrary nets. In the present case, to initiate the process, initial guesses for
the velocity and thermal fields were taken as linear profiles with η∞ = 4. Thus

f = η2/2η∞ (50)

f
′

= η/η∞ (51)

f
′′

= 0.1 (52)

θ = f
′

(53)

θ
′

= f
′′

(54)

The extra boundary condition that is needed for this method of solution is taken as shear stress at the
boundary layer edge.

|v(η∞)| = |f ′′

(η∞)| = ǫ (55)



5 Results and Discussions

The free boundary technique has been used to solve the equations (1)-(3) for various values ofK1
and Pr. The location of the free boundary (boundary layer edge) in all the cases has been found
automatically by the solution procedure as part of the solution depending on a prescribed accuracy ‘ǫ’.
The present results are compared with values obtained in ref[3] by Yazdi et al.

Figure 3 and 4 show the non-dimensional velocity at the wall as a function ofK1 for Pr = 1.0. The
agreement with results of ref [3] is good. ForK1= 0 the classical Blasius value of 0.332 is obtained for
the wall shear. Results of ref [3] indicate this value as 0.322 obtained by shooting method with a fixed
value(η∞) of 5. This clearly demonstrates the superiority of the free boundary technique. From section
(2.2), we observed that the zero slip coefficient corresponds to the no slip condition. Consequently, the
velocity at the wall must be equal to zero. It is clear from thefigure 3 that the non-dimensional wall
velocity becomes zero as the slip coefficient approaches thevalue of zero. It is also clear that as the
slip coefficient increases from zero, the fluid velocity increases at the wall.
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Figure 3: Non-dimensional wall velocity as a function ofK1.

Figures 5 and 6 show the variation of velocity and shear stress in the boundary layer as a function of
η. These profiles also show good agreement and correct trends.Figure 7 and 8 show the variation of
wall temperature andNu as a function ofK1. It is observed that the non-dimensional slip coefficient
increases the heat flux. TheNu number obtained presently show considerable variations with those ob-
tained by shooting method of ref [3]. Figure 9 shows that value ofη∞ as a function ofǫ. It demonstrates
the fact that as the accuracy is tightened (smallerǫ) the value ofη∞ increase asymptotically. So when
the value ofη∞ is fixed, it is difficult to get more accurate results if the value of η∞ is less than the
value which is required to maintain a small value ofǫ. This explains the fact behind the value of 0.322
which is obtained instead of 0.332 when the value ofη∞ is fixed as 5 in ref [3].

As per the boundary conditionf
′

(0) = K1f
′′

(0) and the present method satisfies this exactly over the
entire range ofK1 studied. This is illustrated in the figure (10), which shows aplot of f

′

(0)/f
′′

(0)
.vs.K1 which should ideally be a straight line. In contrast, the results of Ref [3], does not corroborate
this except for smaller values ofK1 and that too only approximately. Thus the free adaptive boundary
technique is seen to be more robust.
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Figure 4: Non-dimensional wall shear stress as a function ofK1.
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Figure 5: Non-dimensional velocity as a function ofη.
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Figure 6: Non-dimensional shear stress as a function ofη.
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Figure 7: Non-dimensional wall heat flux as a function ofK1.
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Figure 8: Non-dimensional wall temperature as a function ofK1.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

η ∞

ε

Pr=1.0,K1=0.0
Pr=1.0,K1=2.0

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

η ∞

ε

Pr=1.0,K1=0.0
Pr=1.0,K1=2.0

Figure 9: Free boundary as a function ofǫ.
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6 Conclusions

A new free floating boundary approach is used to solve the conventional laminar compressible boundary
layer equations. This approach solves the flow of viscous liquids in micro channels, using an efficient
implicit finite difference scheme called the Keller’s box scheme, with appropriate slip boundary con-
ditions applied at the wall. Since the free boundary approach obtains the truncated boundary as part of
the solution, it eliminates the uncertainty associated with the choice of the free boundary in solving the
boundary value problems defined on infinite intervals. The obtained results show that an increase in slip
coefficient tends to increase the fluid velocity and reduce the wall shear stress. It is also observed that
the reduction of velocity gradient leads to the reduction ofboundary layer thickness with the increase in
slip coefficient. The heat flux and local Nusselt number are observed to have an increased value as the
slip coefficient and Prandtl number tend to have a higher value. It is also observed that the wall tempera-
ture is reduced by the increase of slip coefficient and Prandtl number. It is seen that increase in accuracy
levels increases the location of the infinite boundary asymptotically as expected. This approach enables
less sophisticated models to be used for getting accurate solutions in practical applications where near
real time simulations are needed.
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