
Proceedings of the ECCOMAS Thematic International Conference on
Simulation and Modeling of Biological Flows (SIMBIO 2011)
September 21–23, 2011, VUB, Brussels, Belgium

ISAIF10-042

Study of a Lattice–Boltzmann Immersed Boundary Coupled Method
for Fluid-Structure Interactions in Hemodynamics.

Daniel R. Golbert∗†, Pablo J. Blanco∗†and Raúl A. Feijóo∗†
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Abstract
The development of most cardiovascular diseases can be associated with certain specific hemodynamic conditions.
Hence, a detailed description of such conditions is an important information for the medical community. With this
goal in mind, we propose in this work a lattice-Boltzmann Immersed Boundary coupled method to model two and
three-dimensional blood flows in deformable vessels. The lattice-Boltzmann (LB) method is a mesoscale method
that deals with micro-particles distributions on a regular lattice and approximates the incompressible Navier-Stokes
equations under some hypothesis. In the cardiovascular system, besides a detailed blood dynamics description, it
is also important to represent the phenomena of pressure wave propagations (by fluid-structure interactions). When
coupled, for instance, to an Immersed Boundary (IB) method, the LB method can model the fluid dynamics and its
interaction with an immersed structure. Here, the structure represents the arterial walls and the blood is represented
by the fluid inside the closed domain defined by the structure. The LB method with BGK approximation is explicit
and efficiently parallelizable, therefore, suitable to be implemented in a parallel environment in order to reduce the
computing time of complex simulations. In that direction, it is important to point that the use of an IB method has the
advantages of permitting the description of different constitutive laws for the wall arteries and also of preserving the
efficiency of the parallelization of the LB method, without having to create and destroy nodes as the structure moves.
We validate this implementation by simulating an elastic stretched membrane oscillating towards an equilibrium state.
In addition, we present the pressure wave propagation phenomena in two and three-dimensional vessels. These last
two cases are used to study the sensitivity of the problem to changes in some of the new parameters introduced by the
coupled method.
Keywords: Navier–Stokes, Incompressible fluids, Physiological flows, Fluid-structure interaction.

Introduction
The development of many cardiovascular diseases is

associated to certain specific hemodynamic conditions.
Hence, a detailed description of the blood flow in the tar-
get vessels of the human body and the associated hemody-
namic quantities are an important information for the med-
ical community. With this goal in mind, we study in this
work a lattice–Boltzmann Immersed Boundary coupled
method to model two and three-dimensional fluid (blood)
flows in deformable vessels.

Since its introduction in the 80’s the lattice–Boltzmann
method (LBM) has overcome several refinements and ex-
tensions, and has become a promising numerical scheme
for simulating complex fluid dynamics in the most varied
applications. In particular, LBM has been systematically
employed, during the last few years, in several computa-
tional hemodynamics applications. Some examples are the
simulation of blood flows in heart valves [5, 15], in coro-
naries [14], in aneurysms [10, 12] and in the abdominal

aorta [2], among others.
Differing from the conventional methods, based on the

discretization of continuum macroscopic Navier–Stokes
equations, LBM is a mesoscopic particle based method
derived from the Lattice-Gas Cellular Automata method
(LGCA) [16] and the Boltzmann Equation [1]. It approx-
imates the incompressible Navier-Stokes equations under
some hypothesis [11].

In the cardiovascular system, besides the detailed blood
dynamics description that can be provided by this method,
it is also important to take into account the interaction be-
tween the blood and the arterial walls. This allows us to
represent the wave propagation phenomena, as a conse-
quence of the deformation of the arterial walls. When cou-
pled, for instance, to an Immersed Boundary (IB) method
[4], the LB method can model the fluid dynamics and its
interaction with an immersed structure. Here, the struc-
ture represents the arterial walls and the blood is repre-
sented by the fluid inside the closed domain defined by the
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structure. It is important to recall here that the LB method
with BGK approximation is explicit and efficiently paral-
lelizable, therefore, suitable to be implemented in a paral-
lel environment in order to reduce the computing time of
complex simulations. In that direction, the use of an IB
method has the advantages of permitting the description of
different constitutive laws for the wall arteries and also of
preserving the efficiency of the parallelization of the LB
method, without having to create and destroy nodes as the
structure moves.

To accurately represent the involved phenomenology,
we present in this work a study of the fluid-structure in-
teraction model proposed by [4] in terms of mass conser-
vation, influence of the external non-physical fluid, walls
rigidity and the relevance of an implicit coupling. This
analysis can provide a good insight on the correct applica-
tion of this coupled method. The coupling between fluid
and solid problems can be made in an implicit or explicit
manner. In any case, the immersed structure moves with
the same velocity as the fluid and, as a reaction, the struc-
ture responds with a force that depends on the local strains
through a given constitutive law. We also extend this model
to the three-dimensional counterpart, where the immersed
fibers (one-dimensional structures) are replaced by two-
dimensional structures.

We validate this implementation by simulating an elas-
tic stretched membrane oscillating towards an equilibrium
state (see [4]). In addition, we present the hemodynam-
ics area problem of pressure wave propagation in two and
three-dimensional vessels. A discussion about the sensi-
tivity of these problems to the parameters variations is pre-
sented.

The structure of the paper is as follows. In Section
Methods, the governing equations of LBM with BGK ap-
proximation and the chosen methods for implementing
boundary conditions, as well as, its coupling with an im-
mersed boundary are presented. In Section Numerical Re-
sults, we present the numerical validation and study the
results of the three proposed problems. Finally, the con-
clusions are outlined in the Conclusions Section.

Methods
From the numerical point of view, the lattice–

Boltzmann Method with BGK approximation (referring
to the work of [3]) is an explicit method with Eulerian
description. It is based on the movement and collision
of micro-particles distributions described by the lattice–
Boltzmann equation (LBE):

fi(~x+ ∆x ~ei, t+ ∆t)− fi(~x, t) =

1

τ

[
f eq
i (~x, t)− fi(~x, t)

]
, i = 0, . . . , `, (1)

where, fi(~x, t) represents the micro-particles distribution
density at position ~x and time t, moving towards the di-
rection ~ei of the lattice, ∆x is the lattice spacing, ∆t is
the time step and ` is the dimension of the discrete veloc-
ity space. The relaxation parameter (τ ) is related to the
kinematic viscosity of the fluid (ν) through the expression:

ν = (2τ−1)∆x2/(6∆t). It has been demonstrated that the
LBE approximates the Navier-Stokes equations by means
of an asymptotic expansion [11].

The equilibrium distribution chosen for this work was
introduced by [11], and is devised to minimize the com-
pressibility effects of the method. It is described as:

f eq
i = ωi

{
ρ+ ρ0

[
3

(v~ei · ~u)

v2
+

9

2

(v~ei · ~u)2

v4

−3

2

(~u · ~u)

v2

]}
, i = 0, . . . , `, (2)

where, v = ∆x/∆t is the particles speed, the weights ωi

are lattice dependent, ρ0 is the average density (constant),
ρ and u are the density and velocity of the fluid, calculated
from the distribution density as:

ρ(~x, t) =
∑̀
i=0

fi(~x, t), ρ0~u(~x, t) =
∑̀
i=1

v~eifi(~x, t). (3)

In this model, the pressure is calculated as function of
the density

P = ρc2s, (4)

where cs = v/
√

3 is the speed of sound in the lattice.
Several 2D and 3D lattice models were proposed in

the literature for the LBM. The most commonly used
were adopted in the current work, namely the D2Q9
for 2D problems and the D3Q19 for 3D problems (both
shown in Fig 1). The characteristic directions of the lat-
tice model D3Q19 are: e0 = (0, 0, 0), e1 = (1, 0, 0),
e2 = (0, 1, 0), e3 = (−1, 0, 0), e4 = (0,−1, 0), e5 =
(0, 0,−1), e6 = (0, 0, 1), e7 = (1, 1, 0), e8 = (−1, 1, 0),
e9 = (−1,−1, 0), e10 = (1,−1, 0), e11 = (1, 0,−1),
e12 = (0, 1,−1), e13 = (−1, 0,−1), e14 = (0,−1,−1),
e15 = (1, 0, 1), e16 = (0, 1, 1), e17 = (−1, 0, 1), e18 =
(0,−1, 1). And the directions of the lattice model D2Q9
are: e0 = (0, 0), e1 = (1, 0), e2 = (0, 1), e3 = (−1, 0),
e4 = (0,−1), e5 = (1, 1), e6 = (−1, 1), e7 = (−1,−1),
e8 = (1,−1). The mentioned weights for the equilibrium
distribution (see Eq. (2)) of the lattice model D3Q19 are
ω0 = 1/3, ω1−6 = 1/18, ω7−18 = 1/36 and of the lattice
model D2Q9 are ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36.

As mentioned before, the fluid-structure interaction
(FSI) is essential to model pressure wave propagation phe-
nomena in the cardiovascular system, as this happens due
to the deformation capacity of the arterial vessels. As the
LBM is based on a rigid mesh, we have basically two alter-
natives to model the FSI: to create and destroy fluid nodes
as the structure moves [7, 13] or to use a structure im-
mersed in the fluid domain (immersed boundary) [5, 17].
This second approach has the advantages of using fixed
number of nodes, making its implementation and paral-
lelization easier and more balanced, besides the fact that
it allows the modeling of heart valves and other immersed
deformable objects. But it carries the drawback of using
more nodes for the area external to the vessel.
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(a) 2D lattice model D2Q9

(b) 3D lattice model D3Q19

Figure 1 Characteristic directions of the lattice models
D2Q9 and D3Q19.

In a simplified approach one can model the arterial
walls as 1D or 2D massless structures (for 2D and 3D prob-
lems, respectively) that have a constitutive law to relate
their force response to a local deformation. These struc-
tures (immersed boundaries) are composed by connected
nodes that can be described in a Lagrangian manner. To
clarify this idea we expose the macroscopic coupled equa-
tions, as proposed by [8], for the fluid–structure interaction
(with comments on how the coupling equations are inter-
preted by the model):



Mass conservation:
∇ · ~u = 0,

Momentum conservation with force term:

ρ(~ut + (~u · ∇)~u) = −∇p+ µ∆~u+ ~f,

Interaction fluid→structure:

d ~X(~s, t)

dt
=

∫
Ωf

~u(~x, t)δ(~x− ~X(~s, t))d~x,

Constitutive law of the structure:
~F (~s, t) = Sf ~X(~s, t),

Interaction struture→fluid:

~f(~x, t) =

∫
Γb

~F (~s, t)δ(~x− ~X(~s, t))d~s,

(5)

where, P and µ are the pressure and the kinematic vis-
cosity of the fluid, ~f represents the force term (Eulerian
description) of the structure acting on the fluid, ~F is the re-
action force of the structure (Lagrangian description), ~s is
the fiber length (or the area in 3D) of the structure segment,
Sf is the constitutive law, δ is the Dirac delta function, ~X
and ~x represent the spatial positioning of the structure and
the fluid and ~U and ~u their respective velocities. In the sys-
tem above, the Eulerian variables (fluid) were described by
lower case letters and the Lagrangian ones (structure) by
upper case letters.

In a discrete version of equations (5) the force term ~f is
the mapping of the force ~F from the structure by means of
interpolations that make use of a discrete Dirac delta func-
tion, namely δh, which approximates δ when h → 0 (see
[4]). And, as we intend to apply ~f using the LB equation,
this force has to be distributed, inside each node, among
the lattice directions. The force term acting on each di-
rection will be called gi(~x, t). This distribution has to be
done in a way that equations (5) are recovered, such as the
following model [4]:

gi = 3ωi

{
~f · [(~ei − ~u) + 3(~ei · ~u)~ei]

}
,

i = 1, . . . , `. (6)

Many authors [6, 8, 17] include this force such that the
LB equation remains explicit (first order convergence [4]):

fi(~x+ ∆x ~ei, t+ ∆t)− fi(~x, t) =
1

τ

[
f eq
i (~x, t)

− fi(~x, t)
]

+ ∆t gi(~x, t), i = 1, . . . , `. (7)

But when we need to model structures that move fast
or that are exposed to great pressure gradients it is more
recommended the use of higher order methods. In [4] a
second order implicit approach was proposed:

fi(~x+ ∆x ~ei, t+ ∆t)− fi(~x, t) =

1

τ

[
f eq
i (~x, t)− fi(~x, t)

]
+

∆t

2
[gi(~x, t) + gi(~x+ ∆x~ei, t+ ∆t)] , (8)

for i = 1, . . . , `. This implicit equation can be solved
by Piccard iterations (as detailed in [4]). This model was
implemented in the present work to have a second order
approach, but we also tested the explicit approach, even
proposing the use of different time steps for the fluid and
the structure.

The constitutive law of the structures reaction force
may include, for example, coefficients of tension (kt),
bending (kb), fastening (kf ), among others, as shown bel-
low:

~F = kt
∂2 ~X

∂s2
− kb

∂4 ~X

∂s4
− kf ( ~X − ~Z). (9)

In hemodynamics simulations it is a common practice
to impose the value of the pressure at the inlets/outlets.
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Thus, in order to impose the pressure boundary conditions,
we adopted the model propose by [18], designed for flat
surfaces. In addition, we chose the model proposed by [9]
to impose the boundary conditions for the velocity field.
Both method are of second order.

Numerical Results
This section presents results from the implementation

of three problems: a stretched pressurized membrane im-
mersed in a viscous fluid and the wave propagation phe-
nomena in two and three dimensions. The first problem is a
benchmark that allow us to check the volume conservation
of the closed structure and the moving structure behavior.
The other two subsections show the analysis of the hemo-
dynamic problem of pressure wave propagation in vessels.
A more detailed study of the involved parameters is pre-
sented for these problems as they are of great interest in
the modeling physiological blood flows in the main ves-
sels of the human body.

Immersed membrane in 2D

To validate the implementation, we simulated a stretched
pressurized membrane immersed in a viscous fluid. This
choice was made because in this problem the interaction
of fluid and boundary is intense, there is an abrupt pressure
jump across the boundary, and the fluid leakage is easy to
be measured in the close boundary. This membrane is a
closed massless fiber (as shown in Fig 2) that was stretched
to assume an initial elliptic conformation, with major and
minor radii rx = 0.75cm, ry = 0.5cm, respectively. The
constitutive law that describes the boundary force of the
membrane is determined by its local configuration as:

~F = kt
∂2 ~X

∂s2
, (10)

where kt is the fiber tension stiffness. Driven by the restor-
ing force of the elastic boundary and the reaction of fluid
inside, the shape of the membrane should converge to an
equilibrium circular steady state after a period of oscilla-
tions of pressure, velocity, fiber length and enclosed fluid
volume (area).

The parameters of the simulated problem are (as pro-
posed in [4]): ρ0 = 1g/cm3, kc = 0.02g cm2/s2, ν =
0.002cm2/s, the boundary condition is p = 100/3 dyn/cm2

and the initial condition is the same with ~u = 0. It is im-
portant to remark that the equilibrium distribution used on
the present work is devised to minimize compressibility ef-
fects, so the area enclosed by the membrane (as the mass)
is expect to have small oscillations. In fact, until the simu-
lation reaches the stationary phase the area inside the mem-
brane changes less than 0.32%. So the fluid leakage is al-
most negligible in this case.

In Figure 3 are the variations of the horizontal and ver-
tical radii of the membrane until the simulation reaches a
the stationary phase. The pressure in the center of the do-
main is presented in Figure 4 along the same period. Here,

Figure 2 Description of the geometry of the immersed
membrane in 2D and its deformation at the instants 0s, 20s

and 200s.

we notice that the pressure (and the density, see Eq (4))
presents a variation of less than 0.1%.

Figure 3 Variation of the two radii of the immersed
membrane until the stationary phase.

Figure 4 Oscillations of the pressure at the center point C
until the stationary phase.
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Wave propagation in 2D
The pressure wave propagation problem modeled in the
present work takes place in a vessel with distensible walls
and is driven by a short period inflow that increases the
pressure an the inlet and forms the pressure wave. The
walls are modeled by two massless immersed fiber, as
shown in Fig 5. The external area allows the walls to
move (along with the internal and external fluids) and on
the boundary a reference pressure is imposed. While in
the outlet of the vessel a condition of null velocity is im-
posed to have a conservation of the vessel’s area after the
inlet flow. The inflow condition is a parabolic profile with
maximum velocity given by:

umax(t) =

U
Di

D(t)
sin2

(
πt

T

)
, t ≤ T

0, t > T

(11)

where U = 93.33cm/s, Di = 0.015cm is the initial vessel
diameter, D(t) is the inlet diameter at instant t and T =
2.805×10−4s in the period of the inflow. The fluid param-
eters are: ρ0 = 1.05g/cm3 and ν = 0.035cm2/s.

Figure 5 Description of the geometry of the wave
propagation in 2D problem.

The constitutive law that describes the boundary force
of the immersed fibers is dependent of the local fiber dis-
placement from its initial position (~Z):

~F = kf (~Z − ~X), (12)

where kf is the fastening stiffness coefficient.
Figure 6 shows the pressure wave positioning along

two periods, from which we can measure its propagation
speed. Also, this figure shows the change in the wave speed
as the wall fastening coefficient (kf ) changes. The greater
kf is, the more rigid are the walls of the vessel and the
wave speed tends to infinity.

Table 1 shows the pressure wave speed for different ex-
ternal area sizes and different values of kf . Notice that
the wave speed increases as kf increases, but also, that the
wave speed has a dependency on the external area size. As
this external area has an auxiliary role in the problem mod-
eling, it should be as small as possible and the wave speed
should be characterized as a function of kf . It is impor-
tant to remark that the wave speed is the information that
allows us to model elastic arterial walls.

As a complementary test, we checked if a change in the
proportion between structure nodes and fluid nodes would
affect the simulation. Most authors, including this work,
use dx/ds ≈ 4 (proportion between the fluid nodes spac-
ing and the structure nodes spacing) as the theoretical limit

Figure 6 Wave dislocation along two periods for simulations
with kf = 1×107g/s2, 1.2×107g/s2 and 1.4×107g/s2.

Table 1 Wave speed of different problems in 2D.

kf (g/s2) domain width (cm) wave speed (cm/s)
10000000 1.5Di 256.5
10000000 2.0Di 249.0
10000000 4.0Di 230.6
12000000 2.0Di 268.3
14000000 2.0Di 292.2

is 2, but we decided to test dx/ds = 3 and noticed that
for the wave propagation problem the changes in the re-
sults are negligible. But, when using dx/ds = 2 the fluid
leakage through the walls became significant.

Wave propagation in 3D

This problem is similar to the previous one, with the differ-
ence that it takes place in a cylindrical three-dimensional
vessel with the walls modeled by an immersed two-
dimensional structure. To represent the walls of the vessel
we used an immersed structured mesh with four connec-
tions at each node. This problem required a straightfor-
ward extension of the coupling proposed by [4] to three-
dimensions, extending δh to the ~z coordinate.

The modeled vessel has an initial diameter (Di) of
0.3cm and a length of 3cm. The inlet flow is a parabolic
profile with maximum velocity given by Eq. (11), where
where U = 0.525cm/s and T = 1.122s. The fluid param-
eters are: ρ0 = 1.05g/cm3 and ν = 0.0035cm2/s. And the
immersed structure has the same constitutive law as in the
previous case (see Eq.(12)). The external volume is de-
fined as a surrounding rectangular box (as shown in Fig 7)
because the pressure imposition method is designed for flat
surfaces. As in the previous case a reference pressure is
imposed in the boundaries parallel to the planes XY and
XZ.

Table 2 presents the calculated wave speeds for differ-
ent values of the fastening stiffness coefficient (kf ) with
a fixed external volume. From this table we find an al-
most linear relation between the wave speed and the coeffi-
cient kf . Therefore, one could estimate the value of kf that
would model the behavior of an elastic three-dimensional
arterial wall with a given wave propagation speed (usually
around 5m/s).
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Figure 7 Geometry of the wave propagation in 3D problem.

Table 2 Wave speed of problems with different coefficients
kf in 3D.

kf (g/s2) domain width (cm) wave speed (cm/s)
150 1.3Di 3.07
200 1.3Di 3.52
300 1.3Di 4.32
400 1.3Di 5.11
600 1.3Di 6.59

The computational cost of detailed 3D simulations is
quite high, if compared to 2D simulations. In part because
the number of fluid nodes and lattice directions increase,
but also because the number of structure nodes increases
and the coupling becomes more costly, as there are more
nodes in the support of δh function (64 in 3D compared
to 16 in 2D). In order to reduce the computational cost of
these simulations we have tested the use of different time
steps for the fluid and the structure, using a larger time step
for the structure. That is reasonable if the structure moves
at a low velocity and the time step of the fluid is very small,
as in the present case. The tests showed that by using a time
step 2 times bigger for the structure the wave propagation
was not affected during the simulation. When we used a
time step 4 times bigger there were a few differences in
the wave positioning (close to 1%), and with it 8 times
bigger some spurious oscillations appeared but the wave
propagation was still very similar. A further analysis is
required to determine the ideal structure time step for a
general case, but for this problem we found an indication
that it should be at most 4 times bigger than the fluid time
step.

Conclusions
This work presented three problems of interest in the

hemodynamics field with fluid-structure interactions. We
propose here the modeling of incompressible fluid flows
in vessels with elastic walls by the coupling of the lattice–
Boltzmann method and the Immersed Boundary method.

In the wave propagation problems we checked that the
external area (that allows the displacement of the vessel’s
walls) affects the wave speed but, once it has been set, we
can analyze and propose a function that relates the wave
speed and the fastening stiffness coefficient (kf ). This
analysis shall be done in a future work.

This study represents a step towards a better description
of the hemodynamics that takes place in arterial segments
of interest. The studied model and its extension made to
three-dimensional cases can detail the blood flow and its

interaction with the arterial walls. This work also opens a
door to the study of blood flow in more complex geome-
tries, for which the consideration of an unstructured mesh
for the immersed boundary is advised.
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