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Abstract
Intestinal edema is a medical condition referring to the accumulation of excess fluid in the interstitium of the intestinal
wall. To study this phenomenon, we developed a computational, poroelastic model of edema formation in the intesti-
nal wall. The intestinal wall is a multi-layered material, whose individual layers have distinct mechanical properties
and structure. Including such details in a numerical model is computationally challenging. We first created and tested
several variations of simplified models, where spatial variations in material properties were replaced with average
quantities. However, these initial models were not successful at replicating experimental results. This warranted the
development of a more complex model that included the layer-to-layer spatial variations in mechanical parameters
and capillary concentrations. This detailed model produced results that matched well with the experimental data.
Keywords: Edema, Intestine, Poroelasticity, Fluid balance, Discontinuous Galerkin

Introduction
Under homeostatic conditions, the fluids of the human

body are kept at a relatively constant volume by the even
exchange of fluids between the circulatory and lymphatic
systems [1, 2, 3]. Edema is a medical condition that arises
when this balance is disrupted in favor of the excess accu-
mulation of fluid in the interstitium (space between tissue
cells) [1, 4]. When this excess build-up of fluid occurs
in the intestinal wall, the condition is known as intesti-
nal edema (IE) [5, 6]. IE is known to cause a decrease
in intestinal smooth muscle contractility, interfering with
the intestine’s normal propulsive activities [5, 6, 7]. How-
ever the connection between edema and decreased muscle
contractility is not clearly understood [6]. Medical per-
sonnel have a vested interest in understanding IE since its
effects contribute to longer hospital stays and patient re-
covery time [1, 8].

To assist experimentalists with understanding edema
development and its effect on intestinal tissue, a computa-
tional model of the phenomenon has been developed. The
intestinal wall is a complex structure comprised of several
layers with varying mechanical properties. In our model,
the intestinal wall is represented as a multi-layered poroe-
lastic medium with an interstitial fluid. We began with
several simplified models that utilized average quantities
instead of fully modeling the layer-to-layer property varia-
tions. However, as the results will show, these models were
not able to accurately simulate edema development as ob-
served experimentally in [5]. Consequently, we modified
the model to account for the spatially-varying properties

of the intestinal wall, and obtained results consistent with
experimental data. This final model is quite complex com-
pared to other previous models of the intestine [9, 10, 11].
However, this complexity is necessary for accurately mod-
eling the changes in fluid pressure and volume observed
experimentally in edematous tissue.

The organization of the paper is as follows. The biol-
ogy of the intestine and edema formation will be presented
first, followed by a summary of current edema research and
previous computational models of the intestine. The math-
ematical model and numerical methods will be described
next. This will be followed by a presentation and interpre-
tation of the simulation results obtained from testing var-
ious degrees of complexity of the model. The paper will
conclude with an outline of future research goals.

Biology of Intestinal Edema
The intestine is a tube-shaped organ of the digestive system
that extends from the end of the stomach to the rectum [12].
Its main purpose is to absorb nutrients from food passing
through the lumen (the intestinal cavity) [13]. Food pro-
gresses through the lumen by the coordinated contraction
of a layer of smooth muscle cells in the intestinal wall [12].
The muscle layer is supplied by blood and lymphatic sys-
tems, as well as a nerve system that stimulates the con-
traction process [4, 14]. Also part of the intestinal wall is
the mucosa and submucosa. The mucosa is the innermost
layer and takes up most of the intestinal wall’s thickness
(about 60-80% [15]). It contains many finger-like projec-
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Figure 1 Diagram of a longitudinal cross-section of the
intestine.

tions, covered in microvilli that create a large surface area
for nutrient absorption [13]. The mucosa has both a blood
capillary and lymphatic systems [13], and is the principle
area of fluid exchange in the intestinal wall [4]. The mu-
cosa has a Young’s modulus on the order of 1 kPa [5]. This
is in stark contrast to the 350 kPa Young’s modulus of its
neighboring layer, the submucosa [6]. The submucosa is
thinner (approximately 10-15% of the wall thickness [15])
and contains connective tissue and elastic fibrils. It also
houses larger blood and lymph vessels [12]. Figure 1 gives
a schematic diagram of the intestinal layers.

In between all the components of the intestinal layers
(muscle cells, connective fibers, nerves, vasculature and
lymphatics) are the interstitial spaces [2]. The fluid vol-
ume of the interstitium is controlled by the hydrostatic and
oncotic pressures of the blood and lymph capillaries, and
those of the interstitium itself [1, 2, 3]. The circulatory
capillaries tend to add fluid to the interstitium, while the
lymph capillaries collect the excess fluid and pump it out
of the interstitium [1, 2, 3]. This fluid balance can be de-
scribed mathematically with an ordinary differential equa-
tion (ODE):

∂V

∂t
= JV − JL (1)

where V is the interstitial volume and JV and JL are the
rates at which fluid is added/removed from the interstitium
by the vascular and lymphatic systems, respectively [1].
As mentioned above, these rates are governed by pressure
gradients, and are defined here using the microvascular fil-
tration model of Starling-Landis for JV and the lymph flow
model of Drake-Laine for JL [1]:

JV = Kf ((PV − p)− σ(ΠV −Πint)) ,

JL =
1

RL
(p+ Pp − PL).

In these equations, p is the interstitial pressure, PV and PL
are the blood and lymph capillary hydrostatic pressures, Pp
is the lymphatic pumping pressure, and ΠV and Πint are
the vascular and interstitial oncotic pressures. Parameters
Kf , σ, and RL are the microvascular filtration coefficient,
plasma protein permeability coefficient, and the lymphatic
resistance coefficient, respectively. In homeostasis, JV is
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Figure 2 Capillary concentration θ(x, y) as one moves
vertically up (y = 0 → 1 mm) through the intestinal layers.

equal to JL, and V remains fairly constant, but during
edema, JV is greater than JL and as a result, V increases.

If one is interested in modeling just the changes in vol-
ume in a very local interstitial area of the body, Equation
1 would be sufficient. However, for IE we are interested
in edema’s effect on the whole intestinal wall. Each of its
layers plays a different role in and is affected differently by
edema development. For example, there is a higher con-
centration of blood and lymph capillaries in the mucosa
compared to the submucosa or muscle layer. The capil-
lary concentration even varies spatially within the mucosa,
with a higher concentration near the lumen. These differ-
ences create different rates of fluid exchange and should
be taken into account in the computation of ∂V/∂t. This
is done in our model by adding a spatially-dependent coef-
ficient θ(x, y) ∈ [0, 1] that describes the concentration of
capillaries at position (x, y) relative to other positions in
the intestine. Equation 1 thus becomes:

∂V

∂t
= θ(x, y)(JV − JL) (2)

A plot of θ(x, y) used in the simulations with non-uniform
capillary concentrations, (derived from biological descrip-
tions of blood and lymph capillary locations [4]) is shown
in Figure 2.

But volume change is not the only quantity of interest
in edema modeling. IE has been linked to decreased in-
testinal muscle contractility so we are interested in model-
ing edema’s mechanical effects on the intestine for possible
explanations of this relationship. This means we want to
model and monitor quantities such as interstitial pressure
and elastic deformation in the intestinal wall, to understand
the stresses and strains placed on each layer. This warrants
the replacement of the ODE in Equation 2 with a partial
differential equation (PDE) system. A poroelastic model
that describes the deformation of the solid phase of the in-
testine and the evolution of the pressure of the interstitial
fluid was chosen, and will be described in the Mathemati-
cal Model section.
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Previous Work
A great deal of experimental work on intestinal edema has
been conducted by the lab of Cox Jr. et. al. at the Center
for Microvascular and Lymphatic Studies at the Univer-
sity of Texas-Houston Medical School. They have carried
out experiments that examine: (1) mechanisms of edema
formation [16], (2) various treatment methods for edema
[5, 7], (3) treatment methods for improving the edema-
induced impaired intestinal transit [8], and (4) signaling
pathways that may link edema to decreased smooth mus-
cle contractility [17, 18, 19].

Mathematical models of the intestine have previously
been developed for simulating various intestinal activities.
Robertson-Dunn et. al. represented the intestine as a chain
of coupled oscillators and utilized an ODE system to model
the slow wave electrical activity in the small intestine [9].
Metry et. al. created a finite element model of the lumen,
and utilized the Stokes’ equation to model fluid flow and
pressure in the intestinal cavity during peristaltic activity
[10]. In this work, the intestinal wall was modeled only as
an impermeable, fixed boundary of the lumen. Francea et.
al. created a virtual three-dimensional model of the intes-
tine based on a central spline skeleton, for surgery train-
ing [11]. In these three models, the intestinal wall is con-
sidered to be a homogeneous material, where individual
properties of the intestinal layers are not considered. For
the activities being studied by these models, such an as-
sumption is likely acceptable. However intestinal edema
is a complex phenomenon involving fluid flow and elastic
deformation within the intestinal wall, and thus requires a
more detailed model.

Mathematical Model
The mathematical model is based on Biot’s theory of

poroelasticity [20, 21]. The intestine is modeled as an
elastic, porous medium whose void spaces are completely
filled with interstitial fluid. The system of PDEs is con-
structed from the conservation of mass and conservation
of momentum equations for the fluid and solid phases.
The model assumes that the fluid is incompressible and
that the fluid-solid boundaries are impermeable. The main
equations will now be presented, but details of the model
derivation can be found in [22, 23]. The equations that
arise from the combination of the fluid and solid conserva-
tion of mass equations are:

−k
µ

∆p+
∂ε

∂t
+ φ(p) = 0,

ε = ∇ · w.

where k is the permeability coefficient of the solid ma-
terial, µ is the fluid viscosity, p is the interstitial fluid
pressure, w is the displacement vector of the solid phase,
ε is the divergence of the displacement vector, and t is
time. The φ(p) term is a source term representing any
fluid added or removed from the system. This is where
the ODE of Equation 2 will come into play, with: φ(p) =
θ(x, y)(JV − JL). Recall that both JV and JL involve the

interstitial pressure p, so this dependence is emphasized in
labeling the source term as φ(p).

To complete our mathematical model, we use a conser-
vation of momentum equation, describing all forces acting
on the porous medium. In a comparison of magnitudes,
the forces most influential to the system are the pressure
forces of the fluid and the elastic forces of the solid. The
conservation equation thus takes the form:

∇·
[
γ(p)(∇w + (∇w)T ) + λ(p)(∇ · w)I

]
−∇p = 0. (3)

where the first part represents the forces from elastic de-
formation, and the second term is the force from pressure.
The tensor I is the identity matrix and γ(p) and λ(p) are
pressure-dependent material parameters of the solid phase.
It has been shown experimentally in intestinal tissue that
there is a threshold pressure over which the elastic mod-
uli of the intestinal material decrease [3, 4, 6]. This sud-
den change is thought to be due to the breaking of connec-
tive fibrils within the tissue [3]. This is represented in the
model by piecewise constant functions for γ(p) and λ(p).
For example:

γ(p) =

{
γ1 if p < pthres
γ2 if p ≥ pthres

with a similar expression for λ(p). As mentioned previ-
ously the different layers of the intestine have different me-
chanical properties, so in the model each layer will have a
different value for γ1, γ2, λ1 and λ2. Table 1 contains the
measured Young’s and shear moduli values of the three in-
testinal layers. The shear modulus is the γ(p) parameter
in our equation, and the λ(p) parameter can be obtained
from the Young’s modulus (denoted E(p)) and shear mod-
ulus with: λ(p) = γ(p)(E(p)−2γ(p))

(3γ(p)−E(p)) . Utilizing the substi-
tution ε = ∇ · w and distributing the divergence operator
in Equation 3, the final system of equations utilized in our
simulations is: :

∂ε

∂t
=

k

µ
∆p− φ(p), (4)

∇ · w = ε, (5)
−γ(p)∆w +∇p = (γ(p) + λ(p))∇ε. (6)

Numerical Methods
The domain for this problem is a two-dimensional rep-

resentation of a longitudinal cross-section of the intestinal
wall. Within this domain are three subdomains that repre-
sent the mucosa, submucosa and muscle layers. Each layer
is discretized with triangular elements. Figure 3 shows the
discretized domain in its initial shape. The equations will

Table 1 Young’s and shear moduli of the three intestinal wall
layers, obtained from [5, 6, 24, 25].

Mucosa Submucosa Muscle
Young’s Modulus: p < pthres 1 kPa 350 kPa 40 kPa

p ≥ pthres 0.5 kPa 250 kPa 20 kPa
Shear Modulus: p < pthres 0.4 kPa 140 kPa 16 kPa

p ≥ pthres 0.2 kPa 100 kPa 8 kPa
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Figure 3 The discretized domain of a longitudinal
cross-section of the intestine.

be solved on the top half of the domain, and the bottom
half will be shown in the results as the top’s mirror image.

Equations 4 - 6 are solved numerically with a discon-
tinuous Galerkin finite element (DGFE) method [26], cou-
pled with a forward Euler scheme for time advancement.
For simplicity of notation, we will discuss the time dis-
cretization first, presenting the equations in the format of 4
- 6. Then the DGFE algorithm will be presented, and we
will suppress time step notation.

The time advancement procedure is broken down into
a two step process. First, given current values for variables
p and ε at time step m, Equation 4 is used to compute ε at
time step m+ 1 with a forward Euler scheme:

εm+1 − εm

δt
=
k

µ
∆pm − φ(pm) (7)

where δt is the size of the time step. The updated εm+1

values are then inserted into the right hand sides of Equa-
tions 5 and 6, and these two equations are solved for pm+1

and wm+1. Values for γ and λ are based on pm:

∇ · wm+1 = εm+1 (8)

− γ(pm)∆wm+1 +∇pm+1 = (9)

(γ(pm) + λ(pm))∇εm+1

Both steps are carried out in a DGFE framework. The
main idea behind DGFE is to approximate the solution of a
PDE with a piecewise discontinuous polynomial function.
Piecewise refers here to finding a separate polynomial so-
lution for each triangular element Tj , j = 1..N where N
is the total number of elements in the domain. Discontin-
uous means that two neighboring triangles need not have
matching solutions on their common edge. We denote the
set of edges in our domain with Γ = ΓI ∪ ΓB , where ΓI
are interior edges and ΓB are the boundary edges.

The polynomial approximation on element Tj
for a particular problem variable can be written as∑n
k=0 α

j
kψ

j
k(x, y), where ψjk(x, y) are a preselected set of

basis functions, and αkj are the unknown coefficients. The

solution over the whole domain can be written as:

P (x, y) =

N∑
j=1

n∑
k=0

αjkΨj
k(x, y)

where

Ψj
k(x, y) =

{
ψjk(x, y) if (x, y) ∈ Tj
0 if (x, y) /∈ Tj

For Equations 4 - 6, there are four unknowns: p, ε and
w = [w1, w2], where w1 and w2 are the x and y displace-
ments. We will denote their polynomial approximations
as: Pp, Pε, and Pw = [Pw1

, Pw2
] respectively, and uti-

lize these in the equations below. To solve for the coef-
ficients of these polynomial approximations, we multiply
Equations 4 - 6 by test functions: vp, vε, and vw. These
test functions are the same basis functions (ψjk(x, y)) of
the polynomial approximation for each variable. We then
integrate each equation over all elements Tj . At this stage,
Equations 4 - 6 have become:
Equation 4:

N∑
j=1

∫
Tj

∂Pε
∂t

vε =

N∑
j=1

∫
Tj

(
∇ · (k

µ
∇Pp)

)
vε

−
N∑
j=1

∫
Tj

φ(Pp)vε

Equation 5:

N∑
j=1

∫
Tj

(∇ · Pw)vp =

N∑
j=1

∫
Tj

Pεvp

Equation 6:

−
N∑
j=1

∫
Tj

(∇ · (γ(Pp)∇Pw)) · vw

+

N∑
j=1

∫
Tj

∇Pp · vw

=

N∑
j=1

∫
Tj

(γ(Pp) + λ(Pp))∇Pε · vw

The next step is to carry out integration by parts on the two
Laplace operators in the system. Before doing so, we need
to define the average and jump of a quantity on the edge
of an element. Let e be an edge between elements Tj and
Tk, with j > k. The average and jump of quantity q along
edge e are denoted respectively as:

{q} =
1

2
q|T e

j
+

1

2
q|T e

k
[q] = q|T e

j
− q|T e

k

If e ∈ ΓB , and e is an edge of Tj then:

{q} = [q] = q|T e
j
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After integration by parts and an application of Green’s
theorem, the system looks like:
Equation 4:

N∑
j=1

∫
Tj

∂Pε
∂t

vε = −k
µ

N∑
j=1

∫
Tj

∇Pp · ∇vε

+
k

µ

∑
e∈Γ

∫
e

{∇Pp}ne · [vε]−
N∑
j=1

∫
Tj

φ(Pp)vε

Equation 5:

N∑
j=1

∫
Tj

vp∇ · Pw =

N∑
j=1

∫
Tj

Pεvp

Equation 6:

N∑
j=1

∫
Tj

γ(Pp)(∇Pw : ∇vw)

−
∑
e∈Γ

∫
e

γ(Pp){∇Pw}ne · [vw]−
N∑
j=1

∫
Tj

Pp∇ · vw

+
∑
e∈Γ

∫
e

{Pp}[vw] · ne

=

N∑
j=1

∫
Tj

(γ(Pp) + λ(Pp))∇Pε · vw

where the normal vector ne is assumed to point from el-
ement j to k. The system in this form is not convergent
or stable [26]. To remedy this, we add stabilization and
penalty terms. These terms are constructed from jumps
of the variables we are trying to solve for. An exact solu-
tion of the problem would be a continuous function of each
variable q, and thus [q] = 0. Adding a term with a jump [q]
penalizes the approximate solution as it moves away from
the exact solution. The complete DGFE system is:
Equation 4:

N∑
j=1

∫
Tj

∂Pε
∂t

vε +
∑
e∈Γ

σ

|e|

∫
e

[Pε] · [vε]

= −k
µ

N∑
j=1

∫
Tj

∇Pp · ∇vε

+
k

µ

∑
e∈Γ

∫
e

{∇Pp}ne · [vε]

+
∑
e∈Γ

σ

|e|

∫
e

[Pp] · [vε] + β
∑
e∈Γ

∫
e

{∇vε}ne · [Pp]

−
N∑
j=1

∫
Tj

φ(Pp)vε

Equation 5:

N∑
j=1

∫
Tj

vp∇·Pw +β
∑
e∈Γ

∫
e

{vp}[Pw]·ne =

N∑
j=1

∫
Tj

Pεvp

Equation 6:

N∑
j=1

∫
Tj

γ(Pp)(∇Pw : ∇vw)

−
∑
e∈Γ

∫
e

γ(Pp){∇Pw}ne · [vw]

+
∑
e∈Γ

σ

|e|

∫
e

[Pw] · [vw]−
N∑
j=1

∫
Tj

Pp∇ · vw

+ β
∑
e∈Γ

∫
e

{∇vw}ne · [Pw] +
∑
e∈Γ

∫
e

{Pp}[vw · ne

=

N∑
j=1

∫
Tj

(γ(Pp) + λ(Pp))∇Pε · vw

In this system, β, σ ∈ R are the stabilization and penalty
coefficients. For the simulations done in this work, β =
σ = 1 which corresponds to the nonsymmetric interior
penalty Galerkin method [27].

This is the system that is solved in the two step process
described above. The coefficients of the approximate poly-
nomial solutions are found by organizing the equations into
linear systems. In the first step we solve the first equation
for the coefficients of Pε at time step m + 1. In the sec-
ond step, the two remaining equations are combined into a
large linear system whose unknowns are the coefficients of
Pp and Pw at time step m + 1. The code for this problem
was adapted from [26]. The linear solve in both steps is
done utilizing PETSc [28, 29, 30].

Model Simulations
We know from experimental data that the three main

layers of the intestinal wall have distinct mechanical prop-
erties, and that there is a non-uniform distribution of blood
and lymph capillaries across these layers [4, 5]. Address-
ing both ideas in a computational model is challenging.
The large differences in elasticity moduli and capillary
concentrations can create large pressure gradients, forcing
the use of smaller time steps and stricter penalty terms to
keep the results stable. As we developed the model, we
tested various simplifications to see if we could match the
experimental results of [5] without fully modeling the two
concepts described above. These simplifications included
utilizing average Young’s and shear moduli for the entire
domain and using a uniform capillary concentration in all
layers. The results of these tests are presented below, but
first we describe the experiments of [5] that we will utilize
as a means of comparison.

In these experiments, intestinal edema was induced in
a group of Sprague Dawley rats by increasing their blood
capillary pressure. There was also a control group whose
blood capillary pressure was not raised. After approxi-
mately thirty minutes, the interstitial pressure in the sub-
mucosa was measured, as well as the overall gain in fluid
volume in the intestine. To mimic the edema scenario in
our simulations we utilized parameter values from these
experiments and from the literature in Equations 4 - 6 (see
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[23] for parameter table). In the edema case PV (blood
capillary pressure) was set to an elevated 20 mmHg [5],
(when it is normally approximately 12 mmHg [5, 31]).
In the experiments, the rats in the edema group had fi-
nal interstitial pressures of 3.8 ± 0.34 mmHg in the sub-
mucosa, and their intestinal volume increased by approxi-
mately 19.8% ± 5%. We will use these two data points as
a means of comparison to our simulation results.

The following variations of the model will now be
tested: (1) Average elasticity moduli with a uniform cap-
illary concentration, (2) Average elasticity moduli with a
non-uniform capillary concentration, (3) Varying elasticity
moduli with a uniform capillary concentration, (4) Vary-
ing elasticity moduli with a lower, uniform capillary con-
centration, (5) Varying elasticity moduli and non-uniform
capillary concentration.

For the simulations described below, all variables are
initialized to zero. The left and right boundaries of the
domain are fixed. The top and bottom boundaries are de-
formable.

Average Elasticity Moduli and Uniform
Capillary Distribution

The experimentally measured elasticity moduli of the in-
testinal layers are given in Table 1. Utilizing the width
of each layer as a weight, we can compute a weighted
average Young’s modulus (66 kPa for p < pthres and
44 kPa for p ≥ pthres) and shear modulus (26 kPa for
p < pthres and 18 kPha for p ≥ pthres) for the whole
intestinal wall. The θ(x, y) function depicted in Figure 2
is a biologically realistic description of the capillary dis-
tribution in the intestinal wall. In this first test, we re-
place this θ(x, y) with a uniform distribution by integrat-
ing: Θ =

∫ 1

0
θ(x, y)dy, and utilizing the value obtained for

Θ as the capillary concentration across the whole domain.
For this test, Θ = θ(x, y) = 0.3414. In this simulation, the
final average interstitial pressure of the submucosa was 9.2
mmHg and the percent total volume change of the intesti-
nal wall was -10%. These values are very different from
the experimental results.

Unlike the experiments, with this model, we are able
to track the average pressure and percent volume increase
over time, separately in each layer. These results are shown
in Figure 4. A contour plot of the interstitial pressure at
the end of the simulation is also shown in Figure 4. This
contour plot also shows the deformation of the domain. We
can see from these plots that initially, the pressure rises
similarly in all layers and volume gain is also equal in all
layers. At approximately 500 seconds in, the submucosa
pressure is in the 4-5 mmHg range (close to experimental
observation for edema), but the volume increase is at 3-4%
(well below experimental observation). After 500 seconds,
the pressures level off for a period and then diverge, and
the volume decreases.

Average Elastic Moduli and Non-Uniform
Capillary Distribution
In this second test, we assign the average moduli derived
in the first test, to all layers of the intestine, and utilize
the biological, spatially-varying θ(x, y) shown in Figure 2.
When this test was run, the simulation was not able to com-
plete all of the time steps due to some variables going to
extreme values. The pressure and percent volume increase
graphs, and a pressure contour plot of the domain at the
end of this simulation are also shown in Figure 4. In this
test, all layers have the same mechanical properties but the
rate at which fluid is being added varies spatially. Because
of this, we immediately see pressure differences arise, with
pressure growth in the mucosa and decline in the submu-
cosa and muscle layer. At the point in time when the sim-
ulation ends prematurely, the pressure in the submucosa
is approximately -2.5 mmHg and the percent volume in-
crease is 3.7%.

Varying Elasticity Moduli and Uniform
Capillary Distribution
In this third test, we utilize the elastic parameters given
in Table 1 and a uniform capillary distribution: Θ =
θ(x, y) = 0.3414. As in the second test, this simulation
was not able to complete all of the time steps due to ex-
treme values arising in some variables. The pressure val-
ues initially grow rapidly in the submucosa, then hit a turn-
ing point near 5 mmHg. The average submucosal pressure
then takes a sharp dive, down into negative pressure val-
ues, ending near -4 mmHg before the computation stops
prematurely. The average pressure over time and the per-
cent volume increase in each layer are shown in Figure 5.
The percent increase in each layer is fairly uniform, but the
overall increase in volume of 5.8% is three times smaller
than experimental observation for edema. Figure 5 also
shows a pressure contour plot of the domain at the end of
this simulation. One can see that the pressure is not uni-
form within each layer, and pockets of extreme values have
formed.

Varying Elasticity Moduli and Lower
Uniform Capillary Distribution
In test number four, we use the biologically-correct elas-
ticity moduli but a smaller capillary concentration across
the domain. We utilized Θ = θ(x, y) = 0.0059, which is
the capillary concentration of the submucosa of θ(x, y) in
Figure 2. This simulation was able to run to completion,
and we obtain final pressure values for the submucosa of
4.41 mmHg, which is close to the experimentally measured
value. However, the volume increase in the intestinal wall
for this simulation was 0.65% which is much smaller than
what is experimentally observed. The plots of these results
are also shown in Figure 5. From the pressure contour plot
for this simulation one can see that the domain has hardly
deformed.
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Figure 4 Top Row: Average interstitial pressure versus time for the three subdomains, for the two average elastic moduli cases.
Middle Row: Percent volume increase versus time for the three subdomains and their total, for the two average elastic moduli

cases. Bottom Row: Contour plots of the pressure at the end of the two average elastic moduli cases.
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Figure 5 Top Row: Average interstitial pressure versus time for the three subdomains, for the two uniform capillary
distributions cases. Middle Row: Percent volume increase versus time for the three subdomains and their total, for the two

uniform capillary distribution cases. Bottom Row: Contour plots of the pressure at the end of the two uniform capillary
distribution cases.
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Figure 6 Top Row: Average interstitial pressure versus time for the three subdomains, for the edema and control case
simulations utilizing varying elastic moduli and a non-uniform capillary distribution. Middle Row: Percent volume increase

versus time for the three subdomains and their total, for the edema and control case simulations. Bottom Row: Contour plots of
the pressure at the end of the edema and control case simulations.
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Table 2 Comparison of edema simulation results to experimental data. An * indicates
this simulation did not complete all time steps.

Final Submucosa p Percent Volume Increase
Experiment 3.8 ± 0.34 mmHg 19.8% ± 5%

Avg. Moduli, Uniform θ(x, y) = 0.3414 9.2 mmHg -10%
*Avg. Moduli, Varying θ(x, y) -2.5 mmHg 3.7%

*Varying Moduli, Uniform θ(x, y) = 0.3414 -4.6 mmHg 6.2%
Varying Moduli, Uniform θ(x, y) = 0.0059 4.41 mmHg 0.65%

Varying Moduli, Varying θ(x, y) 3.79 mmHg 17.8%

Varying Elasticity Moduli and Non-Uniform
Capillary Distribution

The first four models, which employed various simplifica-
tions, were not able to simulate both the correct pressure
and correct percent volume increase observed experimen-
tally. In this final test, we utilize both the biologically-
correct elasticity moduli and non-uniform capillary distri-
bution function. The average, final interstitial pressure in
the submucosa was found to be 3.79 mmHg and the over-
all percent volume increase was 17.8%. These simulation
results are very similar to the experimental data. We then
utilized this model to run a simulation mimicking the con-
trol group scenario from the experiments. For this case, PV
was lowered to a homeostatic level of 12 mmHg. In [5], the
control group’s final submucosal pressure was measured
to be 0.88 ± 0.13 mmHg, and our simulation produced a
final submucosa pressure of 0.78 mmHg. The results of
these two simulations are shown in Figure 6. There is a
steady (but different rate) increase in pressure and volume
in each layer. The mucosa has a higher concentration of
capillaries and also has the lowest elastic modulus of the
three layers, therefore it is intuitive that the mucosa will
have the highest volume increase. The submucosa has the
highest elasticity modulus and therefore will be the most
resistant to deformation, which in turn causes the pressure
in this layer to build up at a faster rate than in the mucosa
or muscle layer.

Conclusions
A summary of all edema simulation results compared

to the edema experimental data is shown in Table 3. None
of the four simplified models were able to produce both
submucosal pressure values and percent volume increase
values that matched the experimental data. Only the most
complex model that included the spatial variation in both
the mechanical parameters and the capillary concentration
produced results very similar to the measured experimen-
tal values. This final model was also utilized to simulate
the control case of the experiments, and these results also
matched well with the measured data of [5].

Assuming a material is homogeneous in its elastic
properties and structure often decreases code development
time and saves computational time during simulations.
However, such assumptions often limit a model’s ability
to realistically simulate the target phenomenon. This was
the case with our simplified models of intestinal edema.

The improvement in accuracy of the final model over the
four simplified models was vast, providing justification for
this model’s complexity.

With this detailed model validated, it will be utilized
in future work to explore possible links between edema
development and decreased intestinal smooth muscle con-
tractility and also to simulate the effects of various edema
treatment methods.
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