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Abstract
A geometrical multiscale model for blood flow through an ideal left ventricle and the main arteries is presented. The
blood flow in the three-dimensional idealized left ventricle is solved through a monolithic fluid-structure interaction
solver. To account for the interaction between the heart and the circulatory system the heart flow is coupled through an
ideal valve with a network of viscoelastic one-dimensional models representing the arterial network. The geometrical
multiscale approach used in this work is based on the exchange of averaged/integrated quantities between the fluid
problems. The peripheral circulation is modelled by zero-dimensional windkessel terminals. We demonstrate that
the geometrical multiscale model is (i) highly modular in that component models can be easily replaced with higher-
fidelity ones whenever the user has a specific interest in modelling a particular part of the system, (ii) passive in that it
reaches a stable limit cycle of flow rate and pressure in a few heartbeat cycles when driven by a periodic force acting
on the epicardium, and (iii) capable of operating at physiological regimes.
Keywords: left ventricle; fluid-structure interaction; hemodynamics; geometrical multiscale modelling; heteroge-
neous models.

Introduction
The accurate prediction of localized effects of therapeutic
procedures on patients suffering from cardiovascular and
arterial disease requires the simulation of the entire closed-
loop system: the heart, the aorta, the arteries, the peripheral
circulation, the veins, the lungs, and the pulmonary circu-
lation. For this purpose many one-dimensional (1D) and
zero-dimensional (0D) lumped parameter models for blood
flow have been proposed in the literature – we refer to [24]
for a recent review. While these models do well in captur-
ing the essential phenomena of the flow, the concentrated
parameters therein often have unclear physiological mean-
ing and need to be calibrated based on patient-specific
measurements before the models can produce physiolog-
ical results. Therefore, when using such models it may be
difficult to predict changes in a patient’s physiology after
a hypothetical surgery, since no measurements are a priori
available for calibration.

With the advent of highly-scalable parallel CFD codes,
full-fidelity three-dimensional (3D) fluid-structure interac-
tion (FSI) simulations of localized compartments of the
cardiovascular system have become feasible. In this frame-
work, we recall for example the works [4, 12, 15], where
3D FSI simulations of important parts, namely the heart
and the ascending aorta, have been reported. With respect
to the reduced models, these high-fidelity models are char-
acterized by more realistic physical laws and they can po-

tentially provide very accurate information on the complex
physical phenomena that occur in the various compart-
ments. From a practical point of view, however, a 3D FSI
simulation of the whole cardiovascular system is charac-
terized by excessive computational costs that would make
such a simulation unfeasible even with the use of the most
modern supercomputer.

From this perspective the geometrical multiscale model
proposed in [8, 9], coupling together dimensionally hetero-
geneous models (3D, 1D, and 0D), offers a compromise
between the two previous approaches (reduced models and
3D FSI). The use of 3D FSI models is therefore limited to
specific regions of interest, where the 3D description of the
domain plays an important role (e.g. in the heart and/or in
the aortic arch etc.) in order to provide accurate informa-
tion on the local physics. The remaining regions (i.e. the
other major branches of the arterial tree) still rely on very
cheap 1D models, which are perfectly suited for describ-
ing the waveform propagation along the arterial network.
Finally, the model is completed by introducing lumped pa-
rameter models at the end of the arterial segments (repre-
senting the peripheral circulation) and for some other in-
terface conditions (e.g. heart valves).

In this work the geometrical multiscale approach is
adopted with a twofold objective: on the one hand to pro-
vide information on the global blood dynamics of the arte-
rial system; on the other hand to accurately describe the lo-
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cal FSI phenomena in the left ventricle. As a consequence,
in our framework a system of 1D models and a 3D FSI
model are used to describe the arterial tree and the left ven-
tricle. From a mathematical and numerical point of view
these heterogeneous computational models are coupled to-
gether by matching averaged/integrated quantities, namely
the flow rate and the normal component of the traction vec-
tor, and the implicit coupling at each time step is achieved
through nonlinear quasi-Newton iterations [14]. The geo-
metrical multiscale framework has been implemented with
the state-of-the-art parallel CFD code LifeV [5], and is
highly modular and easily extensible to include more fine-
scale constituent models.

Possible clinical applications involve pre- and/or post-
surgical simulations of a pathological left ventricle, predic-
tion of critical quantities such as cardiac output after the
ventricle remodelling, and investigation of the influence of
peripheral modifications of the arterial tree to the heart dy-
namics.

Physical models
Three-dimensional models. The 3D FSI model pro-
posed here is adopted for simulation of the blood flow
in the left ventricle. Despite the complexity of the blood
rheology, a Newtonian incompressible fluid represents a
suitable model for blood when we are not interested in the
finer details of the flow [9]. The blood dynamics are there-
fore modelled by formulating the incompressible Navier–
Stokes equations in the case of a moving fluid domain,
resulting in the so-called Arbitrary Lagrangian Eulerian
(ALE) formulation [17].

In order to describe the evolution of the fluid domain,
the displacement of the endocardium (the inner surface of
the ventricle) has to be recovered. Within this perspective
two main approaches can be identified. A first possibil-
ity consists in reconstructing the displacement field from a
suitable interpolation in space and time from a set of data
points h(xi, tj), i = 1, . . . , I , j = 1, . . . , J obtained from
medical images (see e.g. [19, 20]), followed by simulating
only the fluid inside a moving ventricle. The second ap-
proach relies on an accurate mechanical simulation of the
myocardium and on the corresponding numerical resolu-
tion of the coupled fluid-structure interaction problem, in-
cluding possibly the eletrical activation of the heart. Both
approaches have their own challenges. The former is com-
putationally less expensive, but the straightforward pre-
scription of time-dependent computational geometries re-
constructed from medical images, which are often charac-
terized by highly noisy data, may induce strong boundary
singularities in the fluid solution (especially in the pressure
field). The latter approach provides a smooth and (poten-
tially) very accurate interface solution, but the mathemati-
cal model that characterizes heart tissue is often very com-
plex and involves the description of important biological
characteristics such as the fiber directions, the active and
passive deformation, and the electric impulse [16, 18, 23].

In this work, we propose a different strategy, aiming at

being a compromise between the two previous approaches.
Rather than using the medical data to recover the displace-
ment field of the endocardium, we focus on the reconstruc-
tion of the displacements of the epicardium, the outer sur-
face Γout. The resulting field is then adopted as a bound-
ary condition of a “simplified” structural model (here a lin-
ear elasticity model), which is eventually coupled with the
fluid through the endocardium, now the fluid-structure in-
terface ΓFSI.

Remark. Note that in this approach the structural model
adopted is a poor approximation of the true mechanical
model. Its main purpose is to smooth the noisy data and
transfer them onto ΓFSI. It should therefore be understood
that within this strategy we can not expect to recover any
physiologically relevant information on the biological tis-
sue, such as internal stresses. Ongoing work consists in
extending this strategy to more complex mechanical mod-
els [22].

Let Ω = Ωf ∪ Ωs be a reference configuration of the
fluid-structure system, with Ωf and Ωs the reference do-
mains for the fluid and the solid, respectively. We denote
by ΓFSI

def
= ∂Ωf∩∂Ωs the fluid-solid interface. The current

configuration of the fluid domain, Ωf(t), is parametrized
by the ALE map

At : Ωf → Ωf(t)

x 7→ At(x) = x + df(x),
(1)

as Ωf(t) = At(Ωf , t), where df : Ωf × R+ → R3

are the displacement of the fluid domain. We denote by
ΓFSI(t)

def
= ∂Ωf(t) ∩ ∂Ωs(t) the current position of the

fluid-solid interface. In practice, df = Ext(d|ΓFSI
), where

d : Ωs × R+ → R3 stands for the solid displacement and
Ext(·) denotes an harmonic lifting operator from ΓFSI to
Ωf .

The nonlinear fluid-structure problem under considera-
tion reads as follows (see e.g. [9, Chapter 3]):
Find the fluid velocity u = u(x, t) : Ωf × R+ → R3,
the pressure p = p(x, t) : Ωf × R+ → R, and the solid
displacement d = d(x, t) : Ωs × R+ → R3 such that
ρf∂tu|A + ρf(u−w) · ∇u−∇ · σf = 0 in Ωf(t),

∇ · u = 0 in Ωf(t),

ρs∂ttd−∇ ·Π = 0 in Ωs,

d = h on Γout,

(2)

with the interface coupling conditions
df = Ext(d|ΓFSI

), w = ∂tdf in Ωf ,

u = ∂td on ΓFSI(t),

Πns = −Jfσf(F f)
−Tnf on ΓFSI.

(3)

The initial conditions are: u(0) = 0, d(0) = 0 and
∂td(0) = 0; ρf and ρs represent the fluid and solid den-
sities, respectively, ∂t|A the ALE time derivative, σf =
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σf(u, p)
def
= −pI + 2µε(u) the fluid Cauchy stress tensor,

µ the fluid dynamic viscosity, ε(u)
def
= 1/2

(
∇u +∇uT

)
the strain rate tensor, Π = Π(d) the first Piola–Kirchhoff
stress tensor of the structure, F f

def
= ∇A the fluid domain

gradient of deformation and Jf
def
= detF f the Jacobian; nf

and ns are, respectively, the outward unit normals to the
fluid and solid domains. The displacement field h is recon-
structed from a suitable interpolation in space and time of
some registration point on the outer surface Γout (cf. [20]).

In the linearized St. Venant–Kirchhoff model the Piola
tensor is approximated as:

Π ≈ λtr(εs)I + 2µsεs,

with εs = 1/2
(
∇d +∇dT

)
and λ and µs the Lamé co-

efficients. Finally, the harmonic extension problem asso-
ciated to the operator Ext(·) reads: Find df = df(x, t) :
Ωf × R+ → R3 such that{

−∆df = 0, in Ωf ,

df = d, on ΓFSI.
(4)

One-dimensional models. The entire arterial system can
be modelled as a network of 1D models, each one char-
acterized by a circular cross-section (eventually narrowed
along the axial direction) and a viscoelastic arterial wall
(e.g. [6, 7, 21]). Such models have proven to be able to
provide useful information under physiological and patho-
physiological conditions, and therefore give insight about
the main characteristics that lead to the interplay among
physical phenomena taking place in the systemic arteries.

For each cross-section S(t, z), let us define the state
variables

A(t, z) =

∫
S(t,z)

dσ, (cross-sectional area)

Q(t, z) =

∫
S(t,z)

uz(t, z) dσ, (flow rate)

p̄(t, z) =
1

A(t, z)

∫
p(t, z) dσ. (averaged pressure)

(5)

Their evolution is governed by the following system of hy-
perbolic equations derived in [8]

∂A

∂t
+
∂Q

∂t
= 0,

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+
A

ρ

∂p̄

∂z
+KR

∂Q

∂A
= 0.

(6)

HereKR is a resistance parameter accounting for fluid vis-
cosity and α is the Coriolis coefficient. In order to close the
system, an additional equation relating the averaged pres-
sure with the other unknowns Q and A is needed. Consid-
ering only the elastic and viscoelastic contributions (as all
the other terms are negligible in a cardiovascular setting)

the following expression for the pressure-area relation can
be derived [13]:

p̄− pext = β

(√
A

A0
− 1

)
+

γ

A
√
A

∂A

∂t
, (7)

with

β :=

√
π

A0

hE

1− ν2
, γ :=

T tanφ

4
√
π

hE

1− ν2
, (8)

pext andA0 being the external pressure of the tissues on the
vessel walls and the area of the cross-section of the vessel
in the pre-stressed configuration, respectively. The vessel
wall is characterized by a thickness h, an elastic Young
modulus E and a Poisson coefficient ν. Finally the pa-
rameters T and φ are the characteristic time (usually taken
equal to the systolic period) and the so-called viscoelastic
angle, respectively.

In this work we use the data of the arterial network pro-
vided in [21] (Figure 2 and Table 2); the model includes
103 elements – 4 coronary, 24 aortic, 51 cerebral, 10 in the
arms, and 14 in the legs.

Lumped parameter models. In order to complete our
geometrical multiscale model it is necessary to include two
additional elements: the peripheral circulation and the ven-
tricular valves. Both of them are here described by means
of lumped parameter models.

The peripheral circulation is taken into account by cou-
pling the terminal nodes of the 1D network to windkessel
models. In particular, here we use the three element RCR
windkessel model described in Figure 1 which leads to the

Figure 1 Three element RCR windkessel model used at the
terminal nodes of the arterial network.

following equation (see [21])

dP

dt
= − P

CR2
− R1 +R2

CR2
Q−R1

dQ

dt
+

Pv
CR2

, (9)

P and Q are the pressure and the flow rate at the terminal
node, respectively, Pv = 666 Pa [5 mmHg] is the venous
pressure, while R1, R2, and C model the resistances and
the compliance of the peripheral circulation.

For the ventricular valves, different lumped parameter
models have been proposed in literature (see [1, Chapter
7] for a review). Similarly to [1, 7], the valves are here
defined as ideal diodes that allow the blood to flow in only
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one direction, preventing its backflow. In order to present
the model, let us consider for the sake of simplicity the
aortic valve surface (AV) and define on its two sides (ven-
tricular and aortic) the mean normal stress Σ and the flow
rate Q. On the ventricular side (VS), these quantities are
computed as:

ΣVS(t) :=
1

|ΓAV|

∫
ΓAV

(σf(t) · n) · n dΓ,

QVS(t) :=

∫
ΓAV

u(t) · n dΓ,

(10)

while for aortic side (AS) they are defined by:

ΣAS(t) := p̄(t)|AV + pref, QAS(t) := Q(t)|AV, (11)

where pref = 10 kPa [75 mmHg] is the reference pressure.
The state of the valve (open or closed) is defined according
to the values of these scalar quantities and the resulting
lumped parameter models is based on the following two
physiological considerations:

1. if the valve is closed and ΣVS > ΣAS, then it opens;

2. if the valve is open ans QVS < 0 (i.e., when backflow
from the aorta is observed), then it closes.

Despite the fact that the valve operates only on the aver-
aged/integrated quantities of the flow field, we have ob-
served little unphysiological residual flow through it dur-
ing the simulation of the diastolic phase. In any case, the
modularity of our geometrical multiscale model allows for
a very simple incorporation of more advanced models, e.g.
for the mitral valve, since all models, be they 0D, 1D, 3D,
or 3D FSI, are implemented as subsystems that are coupled
together with the same methodology.

In order to prescribe the displacement of the ventricle,
while still obtaining physiological pressure values for the
blood inside it, we need to model both the mitral valve and
the pressure inside the left atrium. As a first approxima-
tion, the latter can be taken as constant. The mitral valve
is simulated with the same diode model as the aortic valve.
The mitral inflow during the diastole is prescribed as an
integrated flux QMV related to the pressure difference be-
tween the left ventricle pressure and the left atrium accord-
ing to the linear law

QMV =


pLA − pLV

RMV
if pLA > pLV

0 otherwise,
(12)

where RMV = 1 Pa·s/cm3 is the flow resistance of the
mitral valve that we tuned empirically to fit our model pa-
rameters. Thus we make no assumption of the flow profile
at the mitral valve relying on unfounded assumptions of
fully-developed flow. This correctly captures the E-wave
of the diastolic phase, as the mitral inflow during the early
diastolic phase is believed to be mainly driven by the suc-
tion created by the expansion of the left ventricle [26]. In
order to model the A-wave, i.e., the secondary flow peak

caused by the contraction of the left atrium that occurs at
the latter part of the diastolic phase, it is necessary to in-
corporate a further model with nonconstant atrial pressure
and/or the contraction of the left atrium. We will address
this aspect in a future work.

Numerical approximation
Three-dimensional models. The 3D FSI problem is
discretized in time with a geometry-convective explicit
scheme (GCE) [3], i.e., the fluid computational domain
and the convective field are extrapolated from the previ-
ous time iteration. The Navier–Stokes equations therefore
reduce to the linear Oseen equations, and the 3D FSI prob-
lem at each time level is linear. The Oseen equations are
discretized in space by P1/P1 finite elements that are sta-
bilized with the interior penalty (IP) method [2]. In this
work we do not consider any turbulence model, even if in
the physiological case a transition to turbulence takes place
during the diastolic. In our experience the IP stabilization
is sufficient to avoid stability problems related to the onset
of turbulence.

The structural equations are also linear and require no
special treatment. Since the geometry is treated explicitly,
the fluid computational domain Ωf(t

k+1) is computed by
using dkΓs as boundary condition in (4). Thus the coupled
3D FSI model after discretization gives at each timestep
tk+1 a monolithic linear system to solve for

Fff FfΓ
FΓf FΓΓ I

Sss SsΓ
SΓs SΓΓ −I

−I I/∆t




yk+1

yk+1
Γ

dk+1

dk+1
Γ

λk+1

 =


fk+1
f

0
fk+1
s

0
dkΓ/∆t

 ,
(13)

where yk := (uk, pk) denotes the fluid variables, vectors
with subindices Γ represent all the variables on the fluid-
structure interface ΓFSI, λk is a Lagrange multiplier that
corresponds to the force transferred from fluid to structure,
and the blocks Fαβ and Sαβ correspond to the sub-blocks
of the finite element matrices of the fluid and structure
problems respectively. The 3D FSI system (13) is solved
by a GMRES method preconditioned by overlapping alge-
braic Schwarz preconditioners based on an inexact block
factorization of the system in the block-composed form.
The solution strategy of the monolithic 3D FSI system (13)
is detailed in [3].

One-dimensional models. By inserting (7) into (6), af-
ter some manipulations, we reach a system of differential
equations that can be written in a classical conservative
form as follows

∂U

∂t
+
∂F(U)

∂z
+ S(U) = 0, (14)

where U are the conservative variables, F the correspond-
ing fluxes, and S represents the source terms. Following
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[6] we solve problem (14) by using an operator splitting
technique that takes a fully explicit second-order Taylor-
Galerkin step for the elastic part of the operator, followed
by a viscoelastic correction step. A full description of the
solution method is given in [13].

Geometrical multiscale algorithms
The coupling between all the elements in the network (in-
cluding all the 1D arterial segments and the 3D FSI heart)
is provided by imposing at each interface the conservation
of the flow rate Qc,m and the equilibrium of the normal
stresses Σc,m:

∀c = 1, . . . , C :


Mc∑
m=1

Qc,m = 0,

Σc,1 = Σc,m, ∀m = 2, . . . ,Mc,

(15)

where C is the total number of coupling interfaces, andMc

is the number of models coupled by the c-th coupling in-
terface (see Figure 2). To satisfy the set of equations (15),

Figure 2 General configuration for the c-th coupling between
Mc models.

we can use different coupling strategies corresponding to
the imposition of different quantities on the boundaries. In
other words, we can set up each subproblem with differ-
ent combinations of boundary data over the coupling inter-
faces. Some examples are provided in [14].

The global coupled system is then solved by using a
classical nonlinear Richardson strategy until convergence
to a suitable tolerance has been achieved. In particular, we
use a quasi-Newton iterative technique, where we compute
the approximate Jacobian matrix of the coupled problem
and then we provide a correction at each iteration using a
Broyden update strategy. This approach leads to a conver-
gent coupling algorithm even when more than one hundred
constituent models were coupled together; in particular we
reach the convergence in few iterations (around 5, with a
tolerance of 1e-6 and without topological changes) after

an initial buildup phase. In case of topological changes
of the system between two time steps (such as the open-
ing or closing of the aortic valve), we are forced to dis-
card the previous Broyden approximant for the Jacobian
of the coupled problem and we therefore proceed with a
reinitialization of the Jacobian matrix by performing one
inexact-Newton step. This causes an increase of the aver-
age number of iterations required by the Broyden method,
due to the fact that all the previous updates of the Jacobian
are lost, even those unrelated to the change of the topol-
ogy. Therefore a better approach would be to reinitialize
just the lines/columns directly affected by the topological
change. This and other improvements will be discussed in
future works. More details about the coupling algorithms
are provided in [14].

Results
The idealized heart is modelled as an ellipsoid with two
valves on the top, the larger one being the mitral valve
and the smaller one the aortic valve. The ellipsoid is dis-
cretized using two tetrahedral meshes. The meshes are
matching at the interface. The mesh for the fluid consists
of 41,550 tetrahedral elements (unstructured) with 7,913
vertices, and the mesh for the structure consists of 28,080
tetrahedral elements (structured) with 6,356 vertices. In
Figure 3 we display a baseline mesh for the fluid and struc-
ture parts respectively. These meshes are refined in order
to obtain the meshes used in the actual simulations. At the
top of the fluid mesh the two circular valve surfaces can be
seen.

As a first test of our proposed multiscale model, we
prescribe idealized inputs for the left ventricle, mainly
the atrial pressure pLA(t) and a time-varying normal force
gepi(t) acting on the epicardium to simulate a heart under-
going electromechanical activation and deformation. The
applied force is shown Figure 4 and it can be identified us-
ing the time-varying elastance method of Suga et al [25].
The goal is to demonstrate that our multiscale model is pas-
sive and that it achieves a periodic state after a few heart-
beat cycles. We are also able to obtain simulation results of
flow rate and blood pressure measured at down-circulation
that are within the physiological range. In a future work
we aim to consider an applied displacement of the struc-
ture obtained from a set of medical images that could be
used to obtain more realistic patient-specific ventricle be-
havior.

Model parameters and inputs are described in Table 1
for reference. The numerical simulation of the left ven-
tricle is initialized with u ≡ 0, p ≡ 0 and with both
valves closed at the end-of-diastole. A reference pressure
of 10 kPa [75 mmHg] is imposed at the aortic valve, which
means that the pressure rises until it reaches a physiologi-
cal level at around t = 0.04 s and the aortic valve opens.
The simulation is allowed to proceed until t = 4.8 s, i.e.,
six full heartbeats, in order to reach the physiological pres-
sure level. The time step for the 3D FSI simulation is
∆t = 0.001 s.

Snapshots of the velocity field |u| and the vorticity field

SIMBIO 2011 5



Figure 3 Coarse finite element meshes for the fluid domain
(left) and the elastic pseudo-structure domain (right).
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Figure 4 Time-varying normal force applied on the
epicardium to simulate deformation of the heart.

ω := |∇ × u| inside the ventricle during the early diastole
are shown in Figure 5 and Figure 6. The velocity profile
is strongly nonparabolic in the early diastole and only de-
velops into parabolic inflow during the middle part of the
diastole. With the model used we did not capture the A-
wave effect of the atrial contraction. Despite the lack of
valve leaflets in our 3D FSI model, two vortices are cre-
ated on both sides of the mitral valve that travel across the
length of the ventricular cavity and slowly dissipate in the
base of the ventricle during the late diastole. Thus even
with such a relatively idealized model it may be possible
in the future to make qualitative evaluations of vortex pat-
ters between healthy and pathological left ventricles along
the lines presented in [10].

All simulations were performed on four nodes with
eight cores each of the Intel Nehalem cluster Antares at
the EPFL. The simulation of one heartbeat takes approxi-
mately 25 hours of wall-clock time. The number of non-
linear iterations taken by the Broyden/Newton schemes for
coupling all the models together at each time step is shown
in Figure 7. The coupling tolerance was fixed at 1e-6.
We observe that, after an initial transient phase where the
model starts from rest and tries to reach the physiologi-
cal conditions, the Broyden method takes consistently 5-15
iterations per time step except whenever the aortic valve
opens and a fallback to the Newton scheme is necessitated.
In order for the multiscale coupling algorithm to be practi-
cal it is vital that the number of nonlinear iterations grows

Figure 5 Left ventricle, absolute value of the velocity of the
flow in the long axial plane during the early diastole.

Figure 6 Left ventricle, absolute value of the vorticity of the
flow in the long axial plane during the early diastole.
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Figure 7 Number of nonlinear quasi-Newton iterations
required for the coupling of the multiscale model.

sublinearly as a function of the number of constituent mod-
els, and we observe such behavior here.

The upper part of the Wiggers diagram in Figure 8 dis-
plays the simulated blood pressure inside the left ventricle,
base of the ascending aorta, and left atrium (prescribed in-
put to the model). Due to the idealized on/off valve we use
here there is no backflow through the mitral valve during
the end-diastole. This could be rectified by incorporating a
more involved 0D model for the mitral valve e.g. along the
lines presented in [1, 11]. Isovolumic contraction and re-
laxation phases can be observed from the volume diagram.
Volumetric quantities of the left ventricle obtained during
the 3rd heartbeat are EDV = 165.4 ml, ESV = 89.7 ml,
and the cardiac output CO = 5.68 l/min. The low ejection
fraction (45.8%) is due to the unphysiological deformation
applied to the ventricle that does not account for torsion
and axial contraction.

In Figure 9 we show the simulated flow rate and pres-
sure at various aortic branches of the 1D network. The re-
sults are in close agreement to the ones obtained using [21]
with a prescribed cardiac output. Some features of note in-
clude the dicrotic notch visible in the pressure function of
the ascending aorta at t = 0.2 s, which corresponds to
the closure of the aortic valve, and the backflow in the ab-
dominal aorta during the early diastole. In order to achieve
smooth nonoscillatory profiles it is necessary to incorpo-
rate in the models both the viscoelastic term for the 1D
arterial walls as well as the RCR windkessel elements for
the terminals modelling the peripheral circulation. In our
experience neglecting either of these two aspects from the
multiscale model leads to excessively oscillating profiles
in both the flow rate and blood pressure. Our multiscale
model reaches a nearly-periodic pressure level in as few as
three heartbeats.

A visualization of the arterial tree as a 1D network is
represented Figure 10. The thickness of the 1D sections is
not in scale to their length (in order to enhance the visual-
ization), and their positioning is purely visual.

Conclusions
We have presented a multiscale model of an idealized left
ventricle coupled to a 1D viscoelastic arterial tree for sim-
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Figure 8 Left ventricle, simulated ventricular pressure and
volume during the 5th and 6 th heartbeat of the simulation.
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Figure 9 Aortic branches, flow rate Q and pressure P in
various aortic arteries. Branch names are taken from [21].
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Figure 10 Arterial tree, propagation of the pressure wave
during late systole. Positioning of 1D network purely visual.

Table 1 Parameter values used in the numerical simulations.

gepi Force on the epicardium (peak) 4.7 N
Es Young modulus of pseudo-structure 0.7 MPa
νs Poisson ratio of pseudo-structure 0.4
ρs Density of elastic pseudo-structure 1.2 g/cm3

pLA Left atrial pressure 1–2 kPa
pVE Venous pressure 0.66 kPa
RMV Mitral valve resistance 1 Pa·s/cm3

ρf Density of blood 1.04 g/cm3

νf Dynamic viscosity of blood 0.035 g·s/cm
σref Reference pressure at aortic valve 10 kPa

Heart rate 75 bpm
Simulation time 4.8 s

ulating the pre- and post-surgical conditions of a patholog-
ical heart and its effect on the cardiac output. Key ingre-
dients included (i) a scalable parallel library for solving
the 3D FSI system for the left ventricle and the 1D hy-
perbolic system for flow in compliant arteries, and (ii) a
general and robust coupling framework for heterogeneous
models into one large geometrical multiscale model. While
1D and lumped parameter models are usually sufficient to
simulate the principal features of blood flow in the human
cardiovascular system, in areas where the geometry of the
vessels has a strong effect on the flow it is necessary to
use fully 3D models with fluid-structure interaction effects.
One also has to provide a method for coupling together di-
mensionally heterogeneous models.

Our multiscale model reached a physiological pressure
level in 3-4 heartbeats, demonstrating that even an ideal-
ized left ventricle is able to produce realistic flow patterns
and simulate some basic principles of blood flow in the
major arteries. In the future we aim to assimilate patient-
specific ventricle data and explore the effects of ventricu-
lar surgery on the cardiac output (cf. also [20]). To achieve
this goal it is necessary to further refine the models being
used and to eventually consider a full closed-loop circu-
lation model. Therefore, the geometrical multiscale mod-
elling and coupling framework must be implemented in a
way that is highly modular and extensible. The coupling
of constituent models should be robust and efficient and
the number of nonlinear iterations taken at each time step
should not grow exceedingly as the size of the multiscale
model grows. We have presented results that indicate the
proposed framework satisfies these requirements. The final
goal is to provide a toolbox of models that can be used by
medical professionals with modest training in numerical
methods and no experience in C++ programming for ex-
perimentation and development of new multiscale models
for investigating specific clinical applications in the treat-
ment of cardiovascular disease.
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