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Abstract
The transport behaviour of the haematocrit in the larger arteries is important in defining the variations in viscosity
of blood. In this study, a finite volume method is used in order to simulate the blood flow and haematocrit transport
through a large 3D human-like 90-degree bifurcation. The simulations are carried out to investigate the importance of
explicitly modelling the non-Newtonian viscosity of blood regarding defining the flow. It is expected to be especially
important in the regions surrounding a bifurcation. The main focus is to compare non-Newtonian to Newtonian
behaviour of the flow through important parameters such as pressure losses, mean viscosity variations and bulk
transport properties of haematocrit. The study considers a broad range of physiological and pulsatile flow conditions,
and displays the importance of modelling blood flow as a non-Newtonian fluid. The results have a relevant impact
regarding the possible discrepencies in important physiological parameters such as wall shear stress (WSS), when
coupling the haematocrit field data back to the viscosity models.
Keywords: Haemodynamics, Blood, Biomechanics, CFD, Bifurcation.

Introduction
The role of the complex viscous behaviour of human

blood on the haemodynamic conditions of the cardiovas-
cular system is important. A good example is the devel-
opment and progression of cardiovascular diseases such as
coronary thrombosis, which is strongly influenced by the
viscous properties [5, 13] and the local distribution and in-
teraction of Red Blood Cells (RBC) and Platelets. Platelet
transport towards and deposition on the vessel wall, fun-
damental to plaque formation in coronary atherogenesis
[4, 31], have been strongly related to blood vessel shear
rate and haematocrit [1, 41]. The increased fluid shear in-
creases the rotation of the RBC and thereby hypothesised
to enhance platelet diffusivity [28]. An increase or de-
crease in volume fraction haematocrit on the other hand
has been reported to displace or expell platelets, more or
less respectively, to the cell poor fluid volumes [1, 23].
Sites of plaque formation that lead to thrombosis are com-
mon in the region of the larger 90-degree arterial branches
in man. Understanding of two-phase mechanisms in blood,
RBC and plasma, is therefore important in prediction and
possible control of platelet deposition. Re-atherogenesis
is shown to play an important role in the failure of vascu-
lar implants such as vascular grafts, artificial hearts, heart
valves and ventricular assist devices [21, 32, 38, 39, 43].

Over the years several non-Newtonian models have
been developed to account for the shear thinning proper-
ties of blood, with respect to two main parameters, shear

rate and volume fraction haematocrit. The models are all
steady state models, calibrated for ranges of fixed pres-
sure gradients that defines the range of fixed shear rates
in viscometers. The parameters are fixed by bulk macro-
scopic measurements and not by the microscopic suspen-
sion properties. This means that the effective viscosity de-
fined is not an intrinsic property of the suspension, rather a
property dependent on specific flow conditions and the av-
eraging of the instrument used to measure [2, 3]. However,
due to observations made during this study, it is believed
that these models may define important flow field data in
physiologically relevant flows; i.e. global parameters, such
as pressure drop and mean transport properties of RBCs.

In this study, the temporal and spatial variations of the
flow, local viscosity and haematocrit for pulsatile blood-
like non-Newtonian fluid properties, in a 90-deg bifurca-
tion, are investigated. Comparisons with Newtonian cases
offer a measure for non-Newtonian behaviour of the blood
if one assumes that the blood can be considered as a ho-
mogeneous mixture characterized by a mixture viscos-
ity. Simulations are carried out with three pulsatile inflow
cases, resembling varying load conditions in the human
circulatory system, applied to the 3D 90 degree bifurcation
geometry. Few studies of this kind have been presented
in the past. To be discussed are the effects of pulsation
frequency, RBC mass diffusivity, boundary conditions and
viscosity on the effects of internal haemodilution (i.e. RBC
concentration variations due to shear). The RBC concen-
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tration is modelled via a scalar transport model that can be
coupled back to the viscosity models.

Methods

Theoretical Background

Viscosity Models

In this study, four different models have been implemented
in order to quantify the dynamic viscosity (µ) of Human
blood. The chosen models are identified as the most com-
prehensively developed and widely used, accounting for
important behavioural parameters such as the existence of
shear strength (shear stress required to initiate flow), New-
tonian viscous limits, shear rate dependency and its depen-
dency on cell and molecular composition [12, 44]. Three
of the models are functions of both haematocrit and shear
rate, while the fourth is a function of solely the latter prop-
erty.

The Bird-Carreau model, initially developed for reac-
tion kinetics of polymers and similar to a model postu-
lated by Cross [17], describes the viscosity by the follow-
ing equation [9, 27, 40]:

µ = µ∞ + (µ0 − µ∞)[1 + (λγ̇)2]
nC−1

2 (1)

Where µ0 = 0.056Pa.s represents ”zero shear viscosity”,
the viscosity value just before the fluid comes to rest;
µ∞ = 0.00345Pa.s is the Newtonian viscosity or ”infi-
nite shear viscosity”, the viscosity value at high shear rates,
λ = 3.313s is the relaxation time constant for haematocrit
and nC is the power law index defining the degree of non-
Newtonian behaviour and γ̇ is the rate of shear of the flow
(the same definition in each model). The Bird-Carreau
model has been widely used in literature using the constant
values as displayed above. It represents the widest range
of shear rates of the four models since it reduces to a finite
viscosity value at zero shear rate. The major disadvantage
is that no explicit haematocrit dependency is defined.

The Casson model, initially derived to describe the flow
behaviour of printing ink, was adapted to describing blood
viscosity as follows [10, 12]:

µ =
τ

γ̇
(2)

τ

γ̇
=

[√
kC(H)γ̇ +

√
τy(H)

]2
γ̇

for τ > τy(H)

γ̇ = 0 for τ <= τy(H)

(3)

Where τ is the fluid shear stress. Terms kC(H) and
τy(H) are a functions of haematocrit H as follows:

kC(H) =
µp

(1−H)A
(4)

τy(H) =

[
B

A
((1−H)A/2 − 1)

]2
(5)

Where µp and H represent the blood plasma viscos-
ity and fraction haematocrit, respectively, values for which
are displayed in Table 1. The Casson intrinsic viscosity,
kC(H) = 0.003 Pas and Shear strength, τy(H) = 0.0053
Pa, are both functions of haematocrit, defined according
to experimental data for human blood. Constants A and
B represent sets of grouped experimental constants de-
fined in work by Cocklet et al. [15], where A = aβ and
B = aαB − 1. The values of the constants are evaluated
according to experimental data and can be used to compute
the above values for kC(H) and τy(H). [15, 34, 35]. The
model is valid over a wide range of shear rates, however,
the shear rate needs to be only greater than 1 s−1 [12, 45].

One of the most recently developed models is that of
the Quemada constitutive equation, known to represent the
broadest range of shear rates for blood, greater than ap-
proximately 0.01 s−1 [45]. It was developed to describe
the Newtonian viscosity of concentrated particle suspen-
sions through the following equation [36]:

µ = µp

(
1− k(γ̇, H)

2
H

)−2

(6)

Where k(γ̇, H) is a function of the haematocrit, µp is
the blood plasma viscosity and H is fraction haematocrit,
for which blood values are quoted in Table 1. Here k(γ̇, H)
incorporates the shear rate and haematocrit dependencies
as follows [37]:

k(γ̇, H) =
k0 + k∞(γ̇/γ̇C)

1/2

1 + (γ̇/γ̇C)1/2
(7)

γ̇C = e(−6.1508+27.923H−25.6H2+3.697H3) (8)

k0 = e(3.874−10.41H+13.8H2−6.738H3) (9)

k∞ = e(1.3435−2.803H+2.711H2−0.6479H2) (10)

Where parameters γ̇C , k0 and k∞ are the critical shear
rate and non-dimensional intrinsic viscosities related to
low and high shear rates, respectively. These correlations
have been developed by Cokelet et al. [14].

The Walburn and Schneck model is an optimised power
law model that includes the important dependencies on
shear rate, haematocrit and plasma protein concentration
[42]. Equation 11, below, displays its form.

µ = C1e
C2HeC4

TPMA
H2 γ̇−C3H (11)

Here the empirical constants are C1 = 0.000797 Pa.s,
C2 = 0.0608, C3 = 0.00499, C4 = 14.585 l/g. Haema-
tocrit is defined as a percentage and TPMA = 25 g/l
is the total proteins minus albumin concentration for hu-
man blood. The shear rate validity for this model has been
reported as being in the range greater than approximately
0.01 s−1 [45]. Figure 1 plots the profiles of each model.

Each of the non-Newtonian models described above are
implemented with respect to corresponding shear rate va-
lidity limits mentioned. All constant material parameters
used during this investigation for blood, and the Newto-
nian fluid, Water, are described in Table 1. The Newtonian
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Figure 1 non-Newtonian viscosity models at 45%
Heamatocrit

value of viscosity for blood is that commonly found to be
the lowest viscosity for blood at normal levels, approxi-
mately 3.5 times that of water. Whole blood composition
(i.e. all components of the blood) at normal levels contains
on average approximately 45% haematocrit [7, 18, 33].

Table 1 Material properties for Human Blood at 37 oC and
Water at 20 oC

Material Density Newtonian
(kg/m3) Viscosity (Pas)

Whole blood 1060 [8, 18] 0.0035 [7]
Blood plasma 1025 [7] 0.00132 [7]

Water 998.2 0.001

RBC Mass Diffusivity

The mass diffusivity of RBCs and other macro-cells is a
consequence of several factors such as fluid shear, electro-
static forces and collisions. There are few studies avail-
able that quantify this property. The mass diffusivity of
RBCs in concentrated suspensions is enhanced by the flow
[6, 11, 24, 26, 29, 30] and constrained by close packing
of neighbouring particles [16]. All studies only consider
steady flow conditions in simple tube geometries and de-
fine empirical shear induced relations describing enhanced
diffusivity properties of RBCs [6, 11, 24]. The values de-
termined via these experimental studies are approximately
two orders of magnitude greater than Brownian diffusion
estimates. However, higher values could be expected dur-
ing pulsatile flows in complex bifurcating domains. Here
complex flow shear patterns, due to strong secondary flow,
could further enhance diffusion. It is not yet known how
transport properties of blood are affected in the region of
bifurcations. Therefore, in this study, a wide range of val-
ues are considered in order to represent the possible values

for diffusivity that could occur in these regions of the arte-
rial network.

Governing Flow Equations

The flow of both the Newtonian and non-Newtonian fluids
are modelled in the single phase incompressible formula-
tion of the Navier-Stokes equations. The fluids are defined
as homogeneous mixtures and expressed as:

∂ui

∂xi
= 0 (12)

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂x2
j

(13)

where ν = µ/ρ is the kinetmatic viscosity. The
dynamic viscosity, µ, defined through each of the non-
Newtonian models, is normalised by the constant density,
ρ, defining the RBC phase as having the same density as
the carrier phase.

The haematocrit is modelled as an advected mixture,
along with Fick’s laws of diffusion, taking the form of a
scalar or mass transport equation. This model uses the flow
field defined by the flow equations discussed above as its
advector. This form of the transport equation and mass
conservation are expressed respectively as:

∂H

∂t
= DH

∂2H

∂xj∂xj
− uj

∂H

∂xj
(14)

Where H is the haematocrit or local volume fraction
of the mixture and DH is the mass diffusivity co-efficient
thereof. The range of mass Diffusivity studied is quoted
as a range of Schmidt numbers (Sc) in order to assess its
influence on the possible RBC range of diffusivities. In
equation 14, for mass conservation of the scalar, the left-
hand side describes the change over time of the enclosed
volume and the right-hand side considers the sum of ad-
vective and diffusive fluxes across the boundaries.

Charateristic velocity (U0 - peak inlet velocity), length
(D, main branch diameter) ,time (ω, angular frequency)
and the average inlet volume fraction (H) scales can be as-
signed to non-dimensionalise the mass transport equation,
as follows:

4α2

Re

∂H∗

∂T
=

1

Pe

∂2H∗

∂x∗
j
2 − u∗

j

∂H∗

∂x∗
j

(15)

Where H∗ = H/H , T = ωt, u∗
j = uj/U0 and

x∗
j = xj/D. The non-dimensional terms, Reynolds

number, Re, Womersley number, α, Peclet number, Pe
and Schmidt number, Sc, can be written as:

Re =
U0D

ν
(16)

α =
D

2

√
ω

ν
(17)

Sc =
ν

DH
(18)
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Pe = ReSc (19)

The Womersley number represents the relative impor-
tance of transient inertial forces versus the viscous forces.
The Reynolds number relates the convective inertial forces
to the viscous forces. The combination of these two num-
bers determines the time dependent flow properties. The
Schmidt number is a measure of the rate of viscous diffu-
sion to the rate of mass diffusion of a species in the flow.
Mass diffusion here considers only that due concentration
gradients. The Peclet number is a measure of dominance
of advection of the species with respect to diffusion.

Numerical Methods and Case Set-up

Numerical Methods

A finite volume scheme is employed to discretize the gov-
erning equations to second accuracy. Backward implicit
time advancement is employed to evolve the equations in
time. A constant time step is used to ensure a time resolved
solution along with the constant fulfilment of the CFL con-
dition below 1 at each time-step. The PISO scheme main-
tains pressure-velocity coupling during each time step, via
implementation of the pimpleFoam solver in OpenFOAM-
1.6. Each of the fifteen cases require approximately 18
pulsation periods to attain a solution that is independent of
the initial conditions.

A mesh consisting only of hexahedral elements is im-
plemented. Three grids are used to investigate whether suf-
ficient grid resolution is attained. Consecutively finer grid
resolutions; 475 179, 1 410 945 and 4 818 447, respec-
tively, are created for the geometry displayed in Figure 3.
The numerical grids are extended at the outlet positions
displayed in Figures 3 and 5, in order to improve the de-
scription of the development of the haemtocrit in the region
of the daughter branch and the bifurcation. Here backflow
at the outlets, without the extensions, would lead to unreal-
istic, uniform distribution values entering the region of in-
terest. The actual distribution is highly non-uniform. The
averaged element size for each of the three grids are re-
lated as follows; h2/h1 = 1.44 and h3/h2 = 1.51. Sufficient
mesh resolution is attained with grid two of element size 1
410 945, when considering the velocity field. Care has also
been taken in defining a high enough resolution in the core
of the daughter branch to model the gradients important
to the scalar transport model. Grid three mentioned above
(cell size 4 818 447), is a local hex refinement of grid two
in the region V1. It is therefore also used to evaluate the
accuracy of chosen grid two in modelling the scalar trans-
port gradients. Figure 2 shows that no further refinement of
grid two is required when analyzing absolute haematocrit
values and dilution behaviour, during systole, displayed at
the top and bottom respectively. The Bird-Carreau non-
Newtonian model is chosen to test this accuracy. Error of
the order of 4% for the absolute value plot at x/d=0.5 along
the z-axis, depicted at the top of Figure 2, is computed at
t/T ≈0.24 just after peak flow. However, this does not
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Figure 2 (top) Volume fraction haematocrit (H) line plot
along the z-axis of a daughter branch cross-section at

x/d=0.5 and t/T ≈0.24, as depicted in Figure 5.; (bottom)
Percentage difference between average haematocrit in V1

and the inlet from t/T= 0.1 to 0.3

significantly affect the dilution in V1, as an error of ap-
proximately 0.5% is computed during systole, depicted at
the bottom of Figure 2. The error estimate is defined as the
RMS of the differences, normalised by the range of values
as follows:

Error =

√∑n
i=1(φ1,i − φ2,i)

2

n
(φ1,2,max − φ1,2,min)

(20)

where φ is the property and n is the number of samples.

Computational Geometry and Boundary Conditions

A simplified arterial model is chosen in order to avoid pa-
tient specific models. It is a simplified model resembling
one of the larger arterial branches in humans adequate for
understanding general flow behaviour [20]. The geome-
try consists of a main branch with a diameter, D =13.2
mm and a daughter branch with diameter, d =9.35 mm.
The 90-degree bifurcation has a smooth, arterial like shape
with an approximate radius of curvature of 9.7 mm, allow-
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ing for a time-dependent point of separation. The geometry
in question is shown in Figure 3.

Figure 3 a) Geometric domain with absolute dimensions, b)
Intel flow rate vs. Time

The choice of inflow boundary conditions, displayed
in Table 2, are chosen according to characteristic arterial
flow data common to the abdominal aorta and its larger
branches [7]. Peak Inflow velocity or amplitude is esti-
mated from this data. The range of periodic pulsation rates
(heart rates), characteristic of arterial flows, are chosen ac-
cording to a normal range representative of the in-vivo flow
conditions in humans. As argued for the geometric choice,
a well-defined temporal inflow profile is chosen in order to
define this periodic pulsating character [19, 20].

QINLET = AMB .U0.e
−0.5c2 , c =

t− nT

0.6T
− 0.38

0.11
(21)

Where n is the number of preceding periods; i.e. for the
first period n = 0, the second n = 1, etc. U0 is the peak
inlet velocity determined by the present Reynolds number,
T is the period time, determined by the present Womersley
number, and AMB is the cross-sectional area of the main
branch. The inlet flow rate vs. time is plotted in Figure 3
above for the inflow case investigated during this study.

Further boundary conditions implemented are no-slip
conditions at the walls and constant reference pressures at
the two outlets. The walls are modelled as rigid structures.

Regarding the scalar transport modelling, the inlet
boundary conditions implemented are chosen to maintain
a constant average Haematocrit, H , that is transported with
each of the flow fields. Two profiles are chosen with dif-
ferent Haematocrit values at the walls while maintaining a
constant average, shown in Figure 4. The profiles are mod-
elled from experimental high volume fraction RBC profile
measurements for laminar flows in tubes [1]. This is typi-
cal behaviour of RBCs where the RBCs migrate away from
the walls in tube flow due to wall effects [22, 25]. A hy-
perbolic tangent equation describes this migration in tube
flow, leaving a cell depleted plasma layer at the wall. The
equation takes the form as follows:

H = H̃ (1 + tanh [m(r − δ)]) +Hw (22)
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Figure 4 Implemented Haematocrit inlet profiles

Here H̃ is a value chosen to achieve a target bulk haem-
tocrit of 45%, Hw is the haematocrit value set at the wall,
r is the radial co-ordinate, m and δ are chosen to set the
profile of the distribution towards the wall.

Each of the inlet haematocrit profiles maintain the zero
gradient conditions to co-incide with that set at the walls.
The volume field condition is initialized with the same av-
erage value of 45% as that at the inlet. Zero gradient con-
ditions are also stipulated at both outlets.

Data is acquired after several periods depending on
each flow case. The convergence criteria used for this
study was that the volumetric difference in mass in the re-
gion of interest V2, from cycle to cycle, not to change by
more than 1%.

Case Setup and Analysis

Three inflow cases are defined to which each of the Newto-
nian and non-Newtonian viscous models are applied. Each
case has the same peak inflow velocity but differ in pulsa-
tion time, shown in Table 2. The range of pulsation time,
presented as beats per minute (BPM), represents a range
of physiological human heart rates, depending on the in-
dividual and degree of effort. Reynolds and Womersley
numbers for blood are quoted as maximum and minimum
values respectively, regarding the minimum viscosity for
blood quoted in Table 1.

For each of the flow cases the scalar transport model,
representing the transport properties of RBC as a mixture,
is computed. The flow is described as homogenous. That
is, the RBC mixture phase or haematocrit has the same
density as the carrier fluid. The haemtocrit, however, is
defined as occupying a certain volume fraction of the fluid
volume representing the mass of RBC. A species equation,
equation 14, is used to model the mass diffusion and ad-
vection of the haematocrit as a volume fraction value. This
equation is coupled back to the computed flow field (uj).
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Table 2 Case set up parameters. Peak inflow velocity, heart
beats per minute (BPM), max (Re) and min (α).

Peak Inlet BPM Re α
Velocity

case 1 0.11 30 440 6.5
case 2 0.11 60 440 9
case 3 0.11 90 440 11

Three RBC mass diffusivities are considered for each in-
flow case, represented by a range Schmidt numbers defined
with respect the viscosity of water, an order of magnitude
apart, Sc ≈1.1, 11, 110. As stated earlier, experimental
values for mass diffusivity of RBCs in complex shear flow
cases does not exist in literature.

The presentation of results will refer to Table 2 when
case referencing. The Newtonian reference case is used
to obtain a measure of non-Newtonian behaviour and aims
to show that the effects are not simply caused by an in-
crease or decrease in Newtonian viscosity. The similarities
in bulk behaviour displayed between the non-Newtonian
models offers qualitative information regarding blood like
mass transport phenomena.

The main region of interest, located by the shaded re-
gion in Figure 5, is due to secondary flows that influence
transport properties, forming a notable separation bubble
due to the 90-degree deviation in the flow. Reference di-
mensions and sample regions used in representing the anal-
ysed data are illustrated in Figure 5.

Figure 5 Co-ordinate system and region references

Volumetric data is extracted from the designated re-
gions of interest, V1 and V2, regarding pressure gradients,
viscosity and volume fraction haematocrit variations. Ef-
fects of pulsation frequency, RBC diffusivity and the dis-
tribution profile on the haemodynamic properties are pre-
sented. One-way and two-way coupled field dependencies

are also compared. Region V2 is half the volume of region
V1, focused on the separation bubble. It is chosen to quan-
tify the influence, proportion wise, the separation bubble
has on haematocrit variation in region V1.

Results
The results presented in the following sections will fo-

cus on the differences in transport properties for an RBC
mixture using Newtonian and non-Newtonian viscosity
models. Firstly, the differences non-Newtonian viscosity
models share when describing blood-like flow behaviour
will be discussed. The effects of RBC mass diffusivity,
pulsation frequency, inlet boundary conditions (Profile 1
and 2) and the different viscosity models on transport prop-
erties in V1 will be displayed. Finally, the influence of the
separation bubble on the change in haematocrit in region
V1 is analysed relative to variations in region V2.

Pressure losses and Viscosity variation
Mean field pressure gradient variations, representing pres-
sure losses, for region V1 for all non-Newtonian models
relative to water are depicted in Figure 6. Mean pressure
gradient values for case 1 initially show a sharp increase,
becoming larger than that of water. This coincides with the
initial high mean levels in viscosity and an increasing flow
rate during systole, Figure 7. The maximum differences
in peak pressure gradient around t/T ≈0.18 are approxi-
mately 20% for between the Bird-carreau and Casson mod-
els. During this increase in flow rate to the point of peak
systole the pressure gradient tends to be higher than for wa-
ter. Almost immediately after the peak pressure gradient a
sudden drop takes place for all cases, reaching a minimum
just after peak systole before rising again. This also coin-
cides with the minimum mean viscosity where the shear
rates are highest. From this point onwards much lower
pressure gradients exist compared to water for case 1. Case
3 continues to rise from the point just after peak systole at
t/T ≈0.24, where pressure gradients are lower than that of
water, to t/T ≈0.32 where higher pressure gradients than
that of water peak again. From this point onwards there
is a drop again, until t/T ≈0.5 where the pressure gra-
dient is slightly lower than water. Around t/T ≈0.7 the
pressure gradients begin to resemble that of water as the
blood comes to rest or exhibits minimal motion. There-
after the pressure gradient differences almost disappear as
flow ceases during diastole. In general, during the pulsa-
tion cycles for all frequencies, large differences in pressure
gradient are observed between the non-Newtonian viscos-
ity models and the Newtonian model water.

The viscosity variation plots displayed in Figure 7
show that as the flow rate increases during systole, all
the models and cases reach a minimum at peak inflow,
t/T ≈0.22. As the flow rate decreases the viscosity in-
creases again until a point at t/T ≈0.55 for case 1 and
t/T ≈0.7 for case 2. There is no distinct point at which
a peak is reached in case 3, as the subsequent decrease
seen in case 1 is due to reverse flow. As the pulsation fre-
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Figure 6 Difference in the mean pressure gradient (∇P) for
all non-Newtonian models minus the pure Newtonian case

(Water) for (top) Case 1 and (bottom) case 3.

quency increases reverse flow in region V1 decreases and
takes place for a shorter period of time at 90 bpm. It is also
observed that each of the viscosity models exhibit very dif-
ferent peaks in viscosity. This is due to the validity limits
set for each model that are constrained differently at shear
rates less than 1 s−1. The reason for the Bird-Carreau
model to display the highest mean viscosity is due to be-
ing the only model valid for the full range of shear rates,
including zero shear rate. The results presented in this sec-
tion dislplays the importance of describing the fluid, blood,
as non-Newtonian in character. The non-Newtonian flow
behaviour is therefore more important than a simple in-
crease or decrease in viscosity and will describe vastly dif-
ferent transport behaviour than a Newtonian fluid like wa-
ter would.

Dilution characteristics
The dilution charaterictics are quantified as the temporal
variation of the average haematocrit fraction in region V1
minus the inlet average. In all figures the dilution variation
is displayed as a percentage difference or deviation with
reference to inlet profile 1. Large variations are observed
in the region of the daughter branch when advection dom-
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Figure 7 Difference in mean field viscosity (µ) quatities for
all non-Newtonian models in region V1 for (top) Case 1 and

(bottom) Case 3.

inates i.e. at high Schmidt numbers. The highest Schmidt
number investigated during the study is 110 for which dif-
fusion is observed to be very low. In the region of bifurca-
tions, flow features such as separation and secondary flows
cause these large variations due to shear. Early on in the
pulsation cycle the centrifugal effect, characteristic to the
radius of the bifurcation curvature, leads to the flow sepa-
ration and generates secondary vortices. The shear layers
produced by these secondary flows leads to the mass trans-
port behaviour affecting haematocrit dilution in the region
of bifurcations.

Figure 8 shows the progression of dilution for cases 1
and 3 in region V1 as a percentage drop in fraction. In
all cases the general progression is similar and correlates
with the applied inflow characteristics. However, with in-
creasing pulsation frequency the correlation becomes less.
For case 1 the first stage of systole shows an increase in
dilution leading to a maximum around peak systole, at
t/T ≈0.22, of as high as 22% for the Bird-Carreau model
and lowest 16% for the Casson model. For case 3 there is
a delay in peak dilution, taking place at around t/T ≈0.3,
leading to dilution of 20% and 12% for the same models as
in case 1. This is an expected delay for higher Womersley
numbers, where the transient inertia is higher leading to a
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Figure 8 Comparison of mean fraction haematocrit
difference in region V1, minus the inlet average, for (top)

Case 1 and (bottom) Case 3.

delay in the core flow momentum. Formation of the sep-
aration bubble is therefore delayed, due to the flow taking
more time to accelerate to a certain velocity. The absolute
increase in dilution between systole and diastole for case 1
is larger than that for case 3. Case 1 shows an absolute dif-
ference of between 11 and 12% and Case 3 only between 3
and 4%, considering the same viscosity models as earlier.
The is caused due to the diminished size of the separation
bubble at higher pulsation frequencies. The delay in for-
mation and the shorter pulsation time, decreases the time
available for the separation bubble to form. The size of
the separation bubble can be depicted by the local extent
of negative axial flow (backflow) near the bifurcation, in
the daughter branch. Figure 9 displays the axial velocity
contours of the Bird-Carreau model at t/T ≈0.34, after
systole, when the separation bubble approximately nears
its maximum size for all cases. The localised ’bubble’ of
backflow decreases in size as the pulsation frequency in-
creases. The emphasis or focus on the impact of the sepa-
ration bubble is described in the section following.

After the peak in dilution, the separation bubble con-
tinues to grow during the deceleration stage of systole. A
steady decrease in dilution is observed in both cases 1 and

3, eventually reaching a constant bulk haematocrit fraction
in the domain. Case 1 reaches this point between t/T ≈0.4
and 0.6 and case 3 between t/T ≈0.6 and 0.8, depending
on the viscosity models. The minimum dilution is there-
fore attained and ranges between 9% and 5% for case 1

Figure 9 Axial velocity (m/s) contours relative to the
daughter branch of all cases for the Bird-Carreau model, at

t/T ≈0.34.
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and between 16% and 10% for case 3, regarding the Bird-
Carreau and Casson viscosity models respectively. The
differences in the dilution properties described by the dif-
ferent viscosity models are due to a combination of the
differences in their viscosity limits and non-Newtonian be-
havioural description. However, there is a consistent ob-
servation that can be made regarding the extent of dilution
throught the pulsation cycle. The non-Newtonian model
with the consistently highest mean viscosity, as seen in
Figure 7, generates the highest levels of dilution. This
can be observed for both cases in Figure 8 and is also
true when considering the minimums. In general the Bird-
Carreau and the Casson models represent the two extremes
for maximum and minimum dilution respectively. Models
Walburn-Schneck and Quemada always tend to define val-
ues between these models and can be seen to be strongly
related to the mean visocisty defined in Figure 7. This in
turn can be related to the shear layer thickness defined by
each viscosity model. A higher mean viscosity is associ-
ated with thicker shear layers in the daughter branch.
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Figure 10 Comparison of mean fraction haematocrit
difference in region V1, minus the that defined by water, for

(top) Case 1 and (bottom) Case 3.

Another fundamental behavioural property displayed
in Figure 7 is the difference in the maximum range of

haematocrit variation or dilution for each viscosity model.
As the pulsation frequency increases this range decreases
i.e. there is smaller difference between the systolic and
diastolic dilution in case 3 than in case 1. This can be ex-
plained through equation 15, describing the effect of non-
dimensional parameters, Reynolds (Re), Womersley(α)
and Schmidt (Sc) numbers, on the transport. The plots
in Figure 8 maintain constant Re and Sc, but increase α
as the frequency increases. This therefore means that the
∂H∗

∂T term, which signifies the rate of change in haemat-
ocrit over time, decreases and is consistent with what is
observed in the results. Another important feature is that
case 3 also shows a lower value of dilution during the dias-
tolic phase than case 1, reflected by all the viscosity mod-

Figure 11 Example of local haematocrit fraction variation
for all cases at t/T =1 (end of the cycle), with increasing
frequency, focusing on region V1. Data is extracted at the

centre channel cross-section, showing the complete
bifurcation profile.
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els. This can be understood by the above explanation and
can be graphically expressed by the number of haematocrit
pulses or packets existing in region V1 at any point in time
during diastole. Figure 11 uses the Bird-Carreau viscos-
ity model as an example to illustrate the evolution of the
pulses of haematocrit with increasing frequency from case
1 to 3 respectively. The diminished size of the separation
bubble for increased frequency is also evident, described
earlier as one of the main reasons for decrease in the total
increase in dilution from the diastolic level.

The impact of defining blood as a non-Newtonian fluid,
in order to model its two phase flow properties, is quanti-
fied by comparing its dilution behaviour to that of water.
Figure 10 displays temporal data of the dilution defined by
non-Newtonian models minus the dilution defined by wa-
ter for case 1 and case 3, in relation to Figure 8. In case 1 it
is observed that during diastole (t/T =0.4 to 1) there is a
difference in relative dilution. This is due to the flow of wa-
ter alone, as all non-Newtonian models show no change in
dilution during this part of the cycle. The dilution defined
by the non-Newtonian viscosity models shows a maximum
of between 7 and 13% less compared to water. The reason
for this is that water has a relatively low Newtonian vis-
cosity and is observed to maintain momentum in the flow
throughout the cycle, since much less force is required to
move a volume of fluid. This means that transport prop-
erties vary by advection througout the cycle. In case 3 it
can be notice that the difference during diastole is much
less pronounced as compared to case 1. This in turn is due
to the same reasons described earlier, refering to equation
15. The non-Newtonian models display greater dilution
throughout this part of the cycle, ranging between 1 and
10%.

During the systolic part of the cycle for case 1, between
t/T=0 and 0.4, there are large differences in dilution. From
the start of systole to the peak there is a very steap pro-
gression in relative difference, leading to a peak dilution
of between 14 and 20%. After peak systole, during the de-
celaration phase, there is steady decrease in dilution until
a constant dilution value is reached again during diastole.
This sharp variation in definition of dilution behaviour dis-
plays the degree of importance in modelling the two phase
flow of blood by non-Newtonian viscosity models.

Influence of Separation Bubble

The smaller region V2 is used in order to focus on the dilu-
tion properties surrounding the separation bubble, in order
to further quantify the importance of the influence that the
separation bubble has on the dilution properties within re-
gion V1. At high Schmidt numbers and due to the forma-
tion of secondary flows in the daughter branch enhanced
dilution behaviour exists.

Figure 12 shows the dilution properties existing in V2,
along with a plot depicting its percentage difference rel-
ative to region V1. Figure 12 (top) shows that there is
a maximum dilution around peak systole as in V1, with
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Figure 12 Case 1 (top) mean fraction haematocrit difference
in region V2 with respect to the inlet average and (bottom)

(%) greater drop in region V2 vcompared to region V1.

a dilution of between 25 and 32%. However, the max-
imum dilution is 50 to 60% greater as compared to that
displayed for V1, depicted in Figure 12 (bottom) denot-
ing the % greater drop. During peak systole, all viscosity
models display the same trend, showing the dominant in-
fluence of the formation of the separation bubble. At this
heart cycle frequency, region V2 shows a constantly high
dilution influence, even throughout diastole, depending on
the viscosity model. The different viscosity models display
a great discrepancy where the Casson model shows an 80%
greater drop as apposed to the Bird-Carreau model where
there is a constant value of about 10% after systole. The
higher value obtained using the Casson model is due to a
much lower mean viscosity observed during diastole, com-
pared to that for the Bird-Carreau model, shown in Figure
7. The effect of the flow is a combination of improved
mixing and backflow mechanisms for the Casson model
and the opposite effect for the Bird-Carreau model, during
the transport of haematocrit. When considering the Cas-
son model these effects carry more haematocrit away from
both regions, upstream, back towards the junction, thereby
further diluting the regions. Hence the greater drop per-
centage during diastole, than for the Bird-carreau model.
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Figure 13 Case 3 (top) mean fraction haematocrit difference
in region V2 with respect to the inlet average and (bottom)

(%) greater drop in region V2 vcompared to region V1.

For case 3, Figure 13 displays the same form of dilution
as for case 1 above. During diastole, when comparing the
dilution to that occuring in region V1, there is little differ-
ence in the progression from the results displayed in Figure
8. However, there is a peak dilution around t/T ≈0.3 of
approximately 15 to 24% appearing during systole where
the separation bubble influences the flow. This leads to a
resonably large contribution from V2 to the overall dilution
in V1, signified by a 15 to 30% greater drop. Unlike case
1, there is not enough time for the flow to develop enough
for mixing and backflow to play a significant role for this
heart cycle frequency. The most influencial secondary flow
mechanism affecting dilution behaviour is the formation
of the separation bubble, causing segregated flow patterns
which narrows the channel of transport into the daughter
branch, during systole.

Effect of RBC profile and Schmidt number

It is of interest to understand the influence the Schmidt
number as well as the inlet haematocrit profiles has on the
dilution. Moreover, whether or not both RBC inlet pro-
files produce significant dilution, is interesting when con-

sidering the differences in variation of both Newtonian and
non-Newtonian viscosity models. Also, the Sc number for
which advective or diffusive fluxes dominate the flow for
non-Newtonian viscosity models is as well.
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Figure 14 Difference in dilution behaviour of the
Bird-Carreau model described by profile 1 and 2 for (top)

Case 1 and (bottom) Case 3.

Haematocrit Inlet profile conditions

In Figure 14 the variation of dilution between cases 1 and 3
are compared for both profiles for the Bird-Carreau model.
Both cases 1 and 3 display the same trend. The dilution
for case 1 shows that there is a difference of 6% between
the profiles during diastole and up to 12% difference near
peak systole. Considering the dilution for case 3 there is
a larger difference between the profiles during diastole of
10% but with a peak systole difference repeatative of case
1. Both profiles describe large, clear variations from what
is imposed at the inlet. Since each profile defines the same
average inlet haematocrit, the differences in dilution be-
haviour come from the minimum value at the wall and the
gradients inherently defined. The trend described by Fig-
ure 14 is similar for all viscosity models.
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Figure 15 Difference in dilution behaviour of the
Bird-Carreau model described by the range of Schmidt

number investigated, between Sc = 1.1 and 110 (top) case 1
and (bottom) case 3.

Schmidt number variation

The variation of the Schmidt number represents the pos-
sibility of the increase in mass diffusivity of the haema-
tocrit when interacting with enhanced secondary flows in
the region of the bifurcation. Figure 15 shows the variation
haematocrit over a cycle for the three Schmidt numbers
studied, using case 1 and case 3, region V1 and the Bird-
Carreau model. The dilution is strongly influenced by the
increase in Schmidt number. From Sc ≈11 and higher the
dilution during diastole is similar around 9 to 10% (1% dif-
ference) for case 1, while displaying a larger difference for
case 3 of up to 3%. Case 3 shows an additional 4 and 8%
increase in diastolic dilution, for Sc =11 and 110 respec-
tively. The higher pulsation frequency means that there
are more frequent haematocrit packets generated, causing
a greater increase in level of dilution. The higher Schmidt
numbers are more important at higher heart pulsation fre-
quencies.

During peak systole the difference between the higher
Schmidt numbers, Sc =11 and 110, is as large as 4% for
case 1 and 5% for case 3. The difference between the

Schmidt numbers stays similar for all cases. However,
the obsolute increase in dilution from diastole to systole is
still larger for larger values of Sc. This difference is even
greater when considering region V2. At low Schmidt num-
bers, Sc =1.1, the diffusive time scale is small enough,
allowing the diffusive flux to penetrate the separation bub-
ble. This means that only a minor variation in dilution dur-
ing peak systole is experienced. There is, however, a con-
stant dilution value of approximately 3% existing through-
out the cycle. As discussed earlier, the haematocrit or the
RBCs have a low mass diffusivity in high concentrations
and therefore advection dominates the transport behaviour.
All viscosity models display similar trends.

Conclusions
This investigation has carried out analysis of flow field

and transport behaviour of a blood like fluid. The pos-
sible extent of importance of modelling blood in its true
character, as a non-Newtonian viscous fluid, is quantified.
Data representing pressure losses, viscosity variations and
haematocrit transport behaviour has yielded:

• There are large variations in mean pressure gradients
and viscosity throughout the heart cycle, at physio-
logical pulsation frequencies between 30 and 90 beats
per minute, for all non-Newtonian models relative to
the Newtonian model water. This varies throughout
the heart cycle for pulses between 30 and 90 beats per
minute. Describing the flow from a non-Newtonian
viscosity perspective is observed to be more impor-
tant than a simple increase or decrease in Newtonian
viscosity.

• Bulk dilution in the extended region V1 is as high as
16 to 22% in terms of RBC concentration, for case
1, representing low heart pulses of 30 bpm, and 12
to 20% for case 3, representing higher heart pulses of
90 bpm. Large changes in fraction haematocrit there-
fore exists in a 90 degree branch with respect to the
average inlet value.

• Large differences in bulk dilution between non-
Newtonian and Newtonian models exists. At peak
systole up to 14 and 20% difference can be observed
at low heart pulse frequencies of 30 bpm and 10% at
higher pulse frequencies. This shows the importance
of describing transport porperties of haematocrit via
non-Newtonian viscosity models.

• The contribution of the separation bubble to bulk dilu-
tion behaviour is important. It defines the large vari-
ations throughout the heart cycle, especially during
systole. Relative bulk dilution increase in region V2
with respect to V1 is as high as 60% near peak systole
for case 1 and 30% for case 3.

• The large variations in bulk haematocrit existing
at high Schmidt numbers, when comparing non-
Newtonian to Newtonian viscosity models, implies
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that there should be important influences on viscos-
ity that need to be considered. The viscosity of blood
is dependent on local haematocrit fraction.

In future work the haematocrit fraction will be coupled
back to viscosity models to define a more complete viscos-
ity dependency. It is then feasible to investigate physiolog-
ical parameters such as Wall Shear Stress, thought to be
important in the development of vascular diseases.
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