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Abstract

In this work we deal with the numerical solution of the fluidegture interaction problem arising in the haemody-
namic environment. In particular, we consider BDF time ditization schemes, and we study different methods
for the treatment of the fluid-structure interface posititocusing on partitioned algorithms. We consider explicit
and implicit algorithms, and new hybrid methods. We studsnartically the performances and the accuracy of these
schemes, highlighting the best solutions for haemodynamdications.
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Introduction tion at previous time steps.
Building efficient strategies for the solution of the fluid- After a suitable linearization of the physical non-
structure interaction (FSI) problem is a major issueam- linearities, whichever of the two strategies is adopted for

putational haemodynamic particular here we are inter-  the treatment of the interface position (implicit or exjt)ic
ested in the FSI problem arising by the interaction betweenone has to deal with knearized~SI problem (in the sense
the blood flow and the vessel wall deformation (see, e.g., that we have eliminated the geometrical and physical non-
[2, 5, 11, 13, 24, 26]). The main difficulties related to the linearities). However, this problem is still coupled thgbu
numerical solution of the FSI problem arg) the treat-  the interface continuity conditions. For the solution déth
ment of theinterface positionsince the fluid domain is an  linearized FSI problem we consider partitioned schemes,

unknown of the problemgeometrical non-linearijy (ii) where one solves the fluid and structure subproblems in an
the treatment of thénterface continuity conditionsvhich iterative framework, until fulfillment of the interface con
enforce continuity of velocities and normal stresses be- tinuity conditions (see, e.g., [2, 6, 8, 14, 25]).

tween fluid and structure(iii) the fact that the subprob- The goal of this work is to compare the accuracy and

lems could be non-lineapfiysical non-linearitigs These performances of different treatments of the FS interface
features make the FSI problem a strongly non-linear cou- position, when partitioned procedures are considered for
pled problem, as there is a substantial amount of energy exthe enforcement of the continuity conditions. To this aim,
changed between fluid and structure in each cardiac beatwe consider an application of such schemes to a patient-
This non-linear behaviour is essentially related to points specific case.

(i) and(ii) above. Therefore, in this work we focus mainly

on these two points. Regarding the third point, we con- The continuous FSI problem

sider just the fluid non-linearity due to the convective term Let us consider an open dom c R3 like the one

in the Navier-Stokes equations, and we consider a linearrepresented in Figure 1 (on the left). This represents the Iu
structure. men of a vessel and it is function of timelnflow and out-
Concerning the first point, we can mainly detect two flow sections are denoted Eyfz (threein Figure 1). Blood

strategies: ammplicit treatmenbf the interface position or  velocity is denoted by, (x,t), the pressure by;(x,t).
an explicit treatmentthanks to extrapolations of the solu- The incompressible Navier-Stokes equations for a Newto-
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each timet € (0,77, fluid velocity us, pressureps
and structure displacement such that

A
pr Lt ppl(uy = wm) - V)ug
~V - Ts(uyp,ps) = fy inﬂ’}7
v éz; =0 in QF,
paga —V Tu(@,) =1, in 2,
up = 857: on Xf,
Tsny)n—T¢(us,pr)n=0 on Xt
SR acily + Ts(R,) 7 = Popi, onx0,,,
' 1)
Figure 1 Representation of the domain of the FSI problem: WhereDA/Dt is the ALE time derivativep; andp,
fluid domain on the left, structure domain on the right. are the fluid and structure densitigsis the constant

blood viscosity,f ; and f, the forcing terms;
nian fluid are assumed to hold@. LetT'; be the related Wi fs 9

Cauchy stress tensor defined by 2. Geometry problem Given the (unknown) interface
T structure displacementi,|so, find the displacement
Ty(uy,ps) = —psl + p(Vuy + (Vug)®). of the points of the fluid domain,, such that
Since we work in a moving domain, the fluid problem is

stated in arArbitrary Lagrangian-Eulerian(ALE) frame- {
work (see e.g. [9, 18]). The ALE mag is defined by an

appropriate lifting of the structure displacement at the FS
interfaceX?, and defines the displacement of the points of
the fluid domainn,,, and their velocityu,,,. For any func-
tion v living in the current fluid configuration, we denote

—-An,, =0 onQl
m f7
Ay =i, onx, @)

and then find accordingly the fluid domain velocity
Uy 1= % and the new pointg’; of the fluid do-
main by moving the pointsc(} of the reference do-

by v := voAits counterpart in the reference configuration. main Q}:
A classical choice in haemodynamic applications to define . 0~
the ALE map is to consider a harmonic extension operator Tp=Tj+ Ny
in the reference domain (see, e.g., [21]).
The vessel wall is denoted Y%, which is an open The two matching conditions enforced at the interface
subset ofR? (see Figure 1, right). The intersection ©f are thecontinuity of velocitieg1), and thecontinuity of

andQ} is empty, and? := QL U Q; is the FS interface.  normal stressefl); . The fluid and structure are also cou-

On X' we define a normal unit vector poiting outward ~ Pled by the geometry problem, leading to a highly nonlin-

of the solid domain and inward to the fluid domain. The €ar system of partial differential equations. Equations (1

inflow/outflow sections (three in Figure 1) are denoted by and (2) have to be endowed with suitable boundary con-

St . With 3¢, we denote the external surface of the struc- ditions onQf \ 3 and Q9 \ (3° U X7,,), and with suit-

ture domain. We denote by, (z, t) the wall displacement. ~ able initial conditions. We prescribe the Robin boundary

We assume that the solid is a linear elastic material, char-condition (1) on3:3,,,, with the aim of modeling the pres--

acterized by the following Piola-Kirchhoff stress tensor ence of a surrounding tissue around the vessel. This choice

corresponds to consider an elastic behaviour of this tis-

~ E — EV ~ - . . . .
T,=—— €@)+—tr(eq,) I, sue, wherey, is the corresponding elastic coefficient (see

2(1+v) (1+v)(1-2v) [19, 20]).

wheree(n) := w E is the Young modulus, and ~ Time discretization of the FSI problem

v is the Poisson ratio. To describe the structure kinemat- ~ Let At be the time discretization parameter afict=

ics we adopt a purely Lagrangian approach, whgigthe ~ nAt, n = 0,1,.... For a generic function, with 2" we

Lagrangian map. For any functiondefined in the cur- ~ denote the approximation afz"). In this work we con-

rent solid configuratio2!, we denote byj := g o L its sider Backward Differentiation Formula@DF) schemes

counterpart in the reference domain. (see [16, 17]). We propose in what follows the discrete-in-
The strong formulation of the FSI problem, including time formulation of the time discrete problem (1)-(2).

the computation of the ALE map, reads therefore as fol-

1. Fluid-Structure problemGiven the (unknown) fluid

o domain velocityu” ™ and the fluid domairﬂ;}“,
1. Fluid-Structure problemGiven the (unknown) fluid the parametersi;;(i = 0,...,p), x5, Bs,i(1 =
domain VelOCityu"L and ﬂUId domainﬂ?' find’ at 07 e ap)7 Os, Csv fs,i(i = 07 % + 1)7 Xsy Rsy
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the solution at previous time steps, and functions A Lagrange multipliers-based formulation

FH Ut and Py, find fluid velocityw ™', pres-
n+1

surep’ ™" and structure d|splacemer7§“r1 such that
[22]
ﬁf,O +1
PITAL Y
+r((u }”11 U”f) V)u ”*11
n+ n—+ n—+ 3 n+1
fvl T =fy +prfrw iIn Qf K
V- u}” = 0 in Q}”r ,
£5,0 ~n+1 S+l i
poaalls —V-T, (@)
~n+1 ~n+1 . 0
— .f fs,W m st
U;L+1 u?Jrl on 2n+1’
T () n
7Tn+1( n+1’p?+1 -0 on EnJrl,
~n+1, _ .
act T+ T @ YR =Payn onXY,,,
3
where

n+1 z:ﬁsz n+1 z

p+1
€6 7

+1 . _ +1-
'fZ;W T Z At2 Al 2’
f7L+1 Z /Bf, n+1 i

are the forcing terms coming from the time discretiza-
tion. In problem (3) we have also introduced the

structure velocityu? := ﬁ&fns f%u, the struc-

ture acceleratiow? := 2;2 Ny — fw,and the fluid
B

accelerationw’; := Fpul — 7w

2. Geometry problem Given the (unknown) interface
structure displacemef’ "' |50, solve a harmonic ex-
tension problem

_ Asntl — A 0
{ “Ofm =0 in Oy, (4)
Mm =1 onX ’

and then find accordingly the discrete fluid domain veloc-
ity

~n—+1

53,0 ~n+1
-~ Jm,U>»

m

~n+1  _
u’m - At

(®)

and the pointse}*! of the new fluid domam byt =
wf + n77}r1+1
quantities are needed for the computatloﬁpr) are ob-
tained using the same formulae as far;;, w, andf, y; .
Observe that (4) guarantees that the displacement of the
fluid interface coincides with that of the structure (geo-

~n+1

. Herefm U, andf W (the last two

In order to introduce suitable algorithms for the numer-
ical solution of (3) and (4), we consider here an equiv-
alent formulation based on the introduction of three La-
grange multipliers living at the FS interface, represeantin
the fluid and structure normal stressesand;, and the
normal derivative of the fluid mesh displacement (see
[22]). These new unknowns are introduced just to simplify
the expression of the three interface continuity condgion
(3)4_5 and (4}, and the derivation of the partitioned al-
gorithms. However, we have not introduced them in our
practical implementation of the algorithms to avoid extra
costs.

We start by introducing some new notations. For the
sake of notation we remove the temporal inéiéx. Given
a spacéV, we denote withV * its dual, withx2 andx.2
we denote the parts of the boundaxy ; \ X where Dirich-
let boundary conditions are prescribed for the fluid sub-
problem and for the harmonic extension problem, respec-
tively, and with$2-0 the part ofdQ? \ £° where Dirich-
let conditions are prescribed for the structure subproblem
Then, we define the following spaces
Q:=

Vy = {ve H' Q) : vlsp =0}, L),

Vyi={ve H(QY): v|gp.0 = 0},
Vm = {’U S Hl(Q()) : U|271:7>1,0 = O}.

LetF : [Vi]? x Q% [Vin]® — ([V4]® x Q)* be the fluid op-
erator andj be the operator related to the right hand side
of the fluid equations. Analogously, for the structure sub-
problem we introduce the operatsr: [Vi]? — ([Vi]?)*
andg,. Finally, for the harmonic extension, we introduce
the operatof : [V,,]®> — ([Vin]?)*. For the definitions of
the above operators, we refer the reader to [22]. We also
define the following trace operators

B Vil = [HY2(EO)P, Fpv = s ,
Vs - [Vvs]S - [H1/2(ZO)}3a Vs = ll’|207 (6)
Yrm, : [Vm]?’ - [Hl/Z(EO)]gv TmZ = 2|go )

and the related adjoint operators.
We are now ready to rewrite problem (3)-(4) as follows

H(??m) + 'Ym)\ in ([Vin]?)",
YTl = VsMs ~ on X9,
Flug,py,um) + 35X = Gy in ([V¢]%)7,
Qg ﬁf’ll;f +Af B B

= as7s (%ﬁe _fs,U) -, onXx?,

aFe %0 1y + As

_as'}/fuf _)‘f+aa'75.faU onx?,

S(m,) + 'Y:As =0 in ([Vs]?)",
(7)

where the interface continuity conditions (7) are lin-

metrical conformity), whereas (5) guarantees that also theear combinations of conditions (3);, through the intro-

mesh and structure velocities coincide at the FS interface

. duction of two functions inL>°(2%), ay # ;. This will
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be useful to derive partitioned procedures based on Robinsolution of the latter, since we are interested in partégbn
interface conditions (Robin-Robin (RR) schemes, see [1-algorithms, we use the following preconditioner (see [2])
3, 15]). This approach has good convergence properties,

independent of the added-mass effect (which is very high @vf}‘ o
in haemodynamic contexts, see [6]) when the parameters = apyp 1
i i Prr = =~ Bs,0 ~
oy anda, are suitably chosen, as shown in [2, 15]. —agyy I | I a7,
In [22] it has been shown that the Lagrange multiplier o S

Ay andA, have the physical meaning of the fluid and struc-
ture normal stress at the FS interfaonghe reference con-
figuration

Numerical algorithms
For the solution of the FSI problem (7), we propose to
use a general preconditioned Richardson method

_F(yk)7

denotes

~

Fyr) oyFtt = ®)

where  ¢* the FSI solution
[k, Xi,,v?, X’;, Xi,ﬁf] at the generic subiteration
k, with vy = (uy,py), Sy**1 is the increment of the
FSI solution at the new iteratioh+ 1 with respect ta/*,
F(y) = 0 corresponds to problem (7), attdis a suitable
preconditioner.

In this work, we consider quasi-Newton methods. In
particular, we consider the following approximation of the
exact jacobian [22]

Ho _
Tm — Vs
P Vq,f}_ ?;Z
afiy 1|1 —ap%p A
—Oésﬁf I I As 5Ast0 73
i s S

where@vf]-‘ is obtained fronVv . 7 by skipping the term
(0uys - V)uy [22]. Moreover, we do not consider the shape
derivativesV,, F. This leads to the Oseen approximation
of the Navier-Stokes problem obtained by using as convec-
tive term previous solutiong ; andu,,.

We are ready now to derive frodi another precondi-
tioner, leading to suitable algorithms for the numerical so
lution of (7). Since the structure is linear, we report these
algorithms in non-incremental form.

Double-loop algorithm

We consider the followingwo block Gauss-Seidgtecon-
ditioner

"o
Ym
ok
Jpr = Zvi}— fYIf I g B w
ff Qf A s
—Oésﬁf I I As % :Y's
_ o8

This corresponds to consider two nested loops, an external
one for the treatment of the interface position through a
fixed-point (quasi-Newton) scheme, and an internal one
for the treatment of the interface continuity conditions
through the RR scheme. In particular, we have the
following algorithm:

Given the solution at iteratiok, solve at the current

iterationk + 1 until convergence (we omit the superscript
k+1)

1. The harmonic extension
~ . o
{ :Aj:lm _P h mn Qj’a
TYm N = Vs Mg ON Eov
obtaining the new fluid domaife; and the fluid do-

main velocityu,,, .

2. The linearized FSI problem. In particular, given the
solution at subiteratioh-1, solve at the current subit-
eration/ until convergence

(a) The fluid subproblem with a Robin condition at
the FS interface

By .0

g+ pp((uf = wn) - V)ug,
~V-Tri=Ffr+orfrw

V- Us | = 0

apvrupr+ Ty

= Qf7Ys <%ns,l—1 - fs,U) + TS»l—l on E’

Pf
in Qf,
in Qf,

(b) The structure subproblem with a Robin condi-
tion at the FS interface

5.0 ~ ~ ~ _
Ps St21737l -V -Ts;=f, +pSfS7W in Qg,

0~ ~
QSALt Vs Ms1 — TSJ

=aFpug —Trn+adfoy onXl.

The use of two different loops for the geometri-
cal/physical non-linearities and for the imposition of the
interface continuity conditions makes this scheme more ro-
bust with respect to the use of just a single loop, as shown
in [22].

Inexact solutions

which corresponds to the sequential solution of the har-In order to improve the performances of Double-loop
monic extension and of a linearized FSI problem. For the scheme in terms of CPU time, we report here a family of
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algorithms drawn from théouble-loopscheme and in- ] ! !
troduced in [22]. In particular, we consider tpeometri- |
cal and convective inexact schemeg€C|S-m), obtained o
from Double-loop by performing at most iterations in

the external loop, We observe that with GCIS-1 we per-
form just one external iteration, that is we solve a lin-
earized FSI problem in a known domain (see [4, 7, 10, 23]).

s

Flow rate (cm®/s)

ey >

Mo N A o

Numerical results .
We consider here an application of previous schemes to e

a real geometry of a patient, namely the human carotid de-

picted in Figure 2, right. In particular, we want to compare  Figure 2 Flow rate waveform prescribed at the inlet of the

the accuracy of GCIS-1 and GCIS-2 schemes with respect carotid (left) and fluid domain (right).

to Double-loop scheme when BDF2 or BDF3 are used for

the time discretization of fluid and structure. For GCIS-1 We run the simulations on 15 processors for the solu-

we use a suitable extrapolation of the interface quantitiestion of the fluid problem and on 1 processor for the struc-

and fluid convective term of order 2 (resp. of order 3) when ture.

using BDF2 (resp. BDF3) schemes, in order to recover a  We consider four different sections of the domain

global order 2 (resp. 3) as shown in [22]. For GCIS-2 such showed in Figure 2, right. The sectidly is located at

extrapolation is not necessary to recover order 2 (resp. 3)0.05cm from the inlet,X, at2cm, X3 at0.01em from the

[22]. The comparison of such schemes when BDF1 dis- internal carotid outlet ani, at0.2¢m from the external

cretizations are considered has been already done in [22]¢arotid outlet. For these sections we report, in Figure 3,

highlighting the good accuracy of the inexact schemes.  the flow rate (up) and the mean pressure (bottom) obtained
We usePlbubble — P1 finite elements for the fluid  Wwith Double-loop/BDF2. We observe that the flow rate is

subproblem andP1 finite elements for the structure higher in the internal carotid, as expected since this is the

> —

o

subproblem, and the following data: viscosity = branch which brings the blood to the brain. The pressure
0.03 dyne/cm?, fluid densityp; = 1g/cm?, structure varies in the rang&0 — 120mmH g, which corresponds to
density p, = 1.2¢g/cm?, Young modulustE = 3 - a typical pressure drop in physiological conditions.

10® dyne/cm?, Poisson ratias = 0.45, time discretiza-
tion parameteAt = 0.001 s, and elastic coefficient of the

surrounding tissue,. = 3-10° dyne/cm?. This value has v 15 L 2
been extracted by the experimental results reported in [19] "E 12 # *, . 22
and allows to recover a pressure in the physiological range. 9 s

For the prescription of the interface continuity condi-
tions, in all the simulations we have considered the RR
scheme, with the optimal coefficients proposed in [15] and
adapted to different temporal schemes in [22].

The results have been obtained with the parallel Finite
Element libraryL| FEV developed at MOX - Politecnico
di Milano, INRIA - Paris, CMCS - EPF of Lausanne and

flowrate [c
O W >

Emory University - Atlanta. g
For the harmonic extension and for the structure, we 115;
prescribe at the artificial sections normal homogeneous :
Dirichlet conditions and tangential homogeneous Neu- 5100*
mann conditions, that is we let the domain to move freely )
in the tangential direction. At the inlet we prescribe the o 85
physiological flow-rate depicted in Figure 2, left, through c
the Lagrange multipliers method [12, 27]. At the outlet, c 10/
we propose to use the following absorbing boundary con- E 0 0-‘¥i o [SP"A' 0.6
dition, obtained by following [22, 23]:
1 ‘
T /F(Tf n)-ndo—R, /rn undo = Py onl, (9) Figure 3 Flow rate (in cm® /s, up) and mean pressure (in
mmH g, bottom) at different sections.
where R, = /3% ﬁ T = % with H In Figure 4 we report the wall shear stress (WSS) and
the structure thickness anfd a reference radius. We set the fluid velocity at the peak instant, obtained with Double
P... =0mmHg. loop/BDF2. The results obtained with GCIS-1 and GCIS-2
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In conclusion, we can state that GCIS-2 scheme is

Velocity (cm/s) . an effective algorithm for the solution of real haemody-
0 WS Gperemn namic problems for second and third order accurate tem-
50 16 poral schemes. Indeed, it features a good accuracy with
k0 |12 respect to the solution obtained with Double-loop, used
' ° here as gold-standard, and a satisfactory improvement in
30 3 . : : .

i ' the CPU time (halving the time with respect to Double-
20 loop). These results confirms the nice features of GCIS-2

scheme for real applications highlighted in [22] for a first
order temporal scheme.
Figure 4 Fluid velocity field (left) and wall shear stress
(right) at the peak instant. Acknowledgments
) o o The authors have been partially supported by the ERC
and with BDF3 are very similar to those reported in Figure aqvanced Grant N.227058 MATHCARD.
4, so that we do not report them here. In order to quantify
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