
Proceedings of the ECCOMAS Thematic International Conference on
Simulation and Modeling of Biological Flows (SIMBIO 2011)
September 21–23, 2011, VUB, Brussels, Belgium

Simulation and optimization of an axial impedance pump

Jan Alexander, Joris Degroote, and Jan Vierendeels

Ghent University, Department of Flow, Heat and Combustion Mechanics
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
Jan.Alexander@UGent.be, Joris.Degroote@UGent.be, Jan.Vierendeels@UGent.be

Abstract
In this research the fluid – structure interaction in a multi layer axial impedance pump is analyzed numerically. The
fluid dynamics solver Fluent is coupled with the structure mechanics solver Abaqus. Based on the results from
these simulations the flow rate is optimized as a function of the excitation frequency. The efficiency of the pump at
resonance frequency is determined. To investigate the functioning of the pump at resonance frequency both Fourier
analysis and wave intensity analysis are used.
Keywords: Valveless pumping, Computational Fluid Dynamics, Fluid Structure Interaction, Computational Structure
Mechanics

The multi layer axial impedance pump
The embryonic heart

The human heart is a very complex structure. Yet it
develops from a very simple tubular valveless pump. In the
earlier embryonic stages of development the blood flow of
the vertebrate is driven by a phenomenon that is called the
Liebau-effect. In 1954 Gerhart Liebau introduced the prin-
ciple of the single layer valveless axial impedance pump [9].
This pump consists of a flexible tube in between two stiffer
tubes. Liebau, and after him many others, demonstrated
that by pinching the tube asymmetrically from the ends a
net flow can be induced.

In the same way the embryonic heart is capable of in-
ducing a net positive blood flow by periodical contractions
of the artery wall [3]. Forouhar et al. convincingly showed
that the driving principle of the blood flow in the heart of
a chicken embryo is not the same as the one that forces
swallowed food from the mouth to the stomach. It is im-
portant to note that the place of contraction is invariable.
Therefore the principle behind the embryonic heart is not
the peristaltic principle.

Apart from the vertebrate embryonic heart axial valve-
less pumps can be found in adult Amphyioxiformes [13]
and it has been argued that the adult human heart functions
corresponding to the Liebau–effect during cardiopulmonary
resuscitation (CPR) [16].

There are two main incentives for the investigation of
the axial impedance pump. First there is the medical reason:
a better understanding of the flow dynamics in the embry-
onic heart is interesting since it may help to understand the
complex development process of the four-chamber adult
heart. Apart from the genetic factors the hemodynamical
feedback is expected to play an important role in this for-

mation process.
Second, the axial impedance pump offers a number of

interesting technical advantages:
1. Due to the very simple mechanical design that con-

tains no failure-prone components like valves the axial
impedance pump offers some interesting possibilities
for micro-electronical applications.

2. The strict separation of the fluid and the components
of the pump is a very disirably property for pumping
systems of bio-fluids.

These two reasons have made that the axial impedance
pump has been the subject of many research projects since
Liebau’s first experiments. The single layer axial impedance
pump has already been investigated experimentally [1, 8],
analytically [1] and numerically [7].

The biggest disadvantage of the axial impedance pump
is the complex control system that is needed. The perfor-
mance of the pump is extremely sensitive to small changes
in the actuation parameters like frequency and duty ratio of
pinching. The control of these parameters will not be easy
in a practical system.

The pumping principle
In literature two different aspects are recognized as caus-

ing the flow. First there is the static asymmetry of the con-
struction, simply due to the fact that the elastic part at one
side of the pincher is longer than at the other side a net flow
in the direction of the longest elastic part originates. Bring-
ley et al. [1] demonstrated that by neglecting the frequency
influence completely a net flow can be calculated, much
like the valveless diffuser pump investigated by Olsson et
al. [11]. Just like the valveless diffuser pump uses the dif-
ference in flow resistance between a nozzle and a diffuser
to obtain a net positive flow without using valves the axial
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Figure 1 The embryonic heart of a chicken [14]

impedance pump uses the difference in flow resistance be-
tween the longer flexible part and the shorter flexible part.
Secondly there is clear evidence that resonance plays a
strong role in the functioning of the axial impedance pump.
All researchers report a very clear non-linear relation be-
tween the actuation frequency and the mass flow through
the pump.

The idea behind the multi layer axial impedance pump
is that one can enforce the resonant waves in the structure
by preventing the tube to expand outward. The construc-
tion is only slightly more complex. The outer part of the
tube is stiffer, thus preventing the thick inner gel-like layer
to expand outward. The goal is to maximize the inward
wave. Loumes investigated this pump using a monolithic
code [10]. The idea is based on the the structure of the em-
bryonic heart of a mammal. Figure 1 shows the embryonic
heart of a chicken embryo. One can see that there is a stiffer
outside layer (indicated with My from Myocardium) and
a gel-like inner layer (indicated with a ‘*’, it is called the
cardiac jelly).

The model
The model is composed of two main parts: the fluid

domain that is simulated using the CFD1-solver FLUENT
and the structure domain that is simulated using the CSM2-
solver ABAQUS. Both parts are coupled using the IQN-
ILS algorithm. This is a technique that solves the said
equations at the interface using quasi-Newton iterations
with an approximation for the residual’s Jacobian matrix
using a least-squares model [2]. In this section four things
will be discussed: first the geometrical parameters of the
model, then the characteristics of the fluid domain and the
structure domain and finally the IQN-ILS algorithm that
was used to couple both.

Geometry
Due to the axi-symmetrical geometry of the three di-

mensional multi layer axial impedance pump the numerical
model could be constructed in two dimensions. A model
was constructed with dimensions similar to the dimensions
used by Loumes [10] and Hickerson [6] (see figure 2 and

1Computational Fluid Dynamics
2Computational Structure Mechanics
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Figure 2 Model of the multi layer axial impedance pump.

Geometry
Length 0.152 m
Radius fluid domain 0.0055 m
Pincher clearance from end
of tube

0.016 m

Pincher width 0.010 m
Thickness inner layer 0.00405 m
Thickness outer layer 0.00075 m

Fluid
Density 1000 kg

m3

Viscosity 0.003 Ns
m2

Structure
Density 1000 kg

m3

Stiffness inner layer 5000 Pa
Stiffness outer layer 106 Pa
Poisson coefficient inner
layer

0.3

Poisson coefficient outer
layer

0.49

Table 1 Geometrical and physical parameters of the model

table 1). This way it was hoped to be able to compare with
the results of these different researches.

Fluid
The used flow equations are the well known conserva-

tion laws for incompressible Newtonian fluid:

~∇ · ~vf = 0 (1)
∂~vf
∂t

+ ρf ~∇ · (~vf~vf ) = ρf ~ff + ~∇ · ~~τf (2)

these are the expressions for the conservation of mass and
momentum. In these equations the fluid velocity is ~vf , ρf
is the fluid density, ~ff is the body force on the fluid and ~~τf
is the viscous stress tensor of the fluid.

The discretization of these equations (first order in both
time and space) by the fluid solver introduces a discretiza-
tion error. It is important to find a compromise between
minimizing these effects by using a finer grid and a smaller
time step and keeping the calculation time manageable. To
accord both factors in a sensible way a number of tests were
run. For these tests a growing running wave was imposed
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on the fluid-structure interface. This wave has an amplitude
of 40% of the original fluid diameter in the middle of the
tube and amplitude decreasing to zero for places closer to
the ends of the tube. It grows in amplitude in a time of 0.1s
and moves with a velocity of 1.72ms . This is represented
in figure 3. The comparison of the performance of the dif-
ferent simulations was done based on the mass flow in and
out and the pressure in a point on the interface close to the
middle of the tube.

Figure 3 Deformation of the fluid domain under prediscribed
motion of fluid-structure interface

Two things could be learned from these tests. First
is that due to the large deformation of the fluid domain
a Laplace-equation based grid adaption system is needed.
The grid moves based on the solution of the following
Laplace-equations:{

~∇2ux = ∆ux = 0
~∇2uy = ∆uy = 0

(3)

where ~u =
[
ux uy

]T
is the displacement of the grid

vertices in two dimensions.
Secondly it could be decided that the solution of the

fluid simulation is more sensitive to the time-step than to
the grid (see figures 4and 5). For the number of time steps
it was decided to use simulations with 100 time steps per
period in the exploring calculations of the process but for
the more accurate simulations more time steps per period
have been used.
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Figure 4 Faults relative to the simulation with the smallest
time step of simulations with a different number of time

steps per period

Structure
The deformation of the structure is determined by the

conservation of momentum

ρs
d2~ds
dt2

= ρs ~fs + ~∇ · ~~τs (4)

Figure 5 Relative faults with relation to the simulation with
the finest grid

where ρs is the density of the structure material and ~fs
is the body force per unit volume of the structure. The
displacement of the structure is ~ds and ~~τs is the stress tensor.

The structure domain is composed of three parts. First
there is the outer thin stiff layer, then there is the thicker
inner flexible layer of the tube. The final component of the
structure domain is the pincher.

The pincher is a separate component of the structure
domain. The other, and less computationally expensive
option of implementing the contraction by simply defining
the movement of a part of the outer surface of the tube
caused unwanted phenomena. By actively defining the
movement of this part of the structure to be zero between
two pinches it was observed that the pressure waves in the
structure reflected at the edges of this part. Between pinches
there should be no physical difference between two separate
places on the outer surface of the structure domain. For this
reason the pincher was modeled using a contact problem in
ABAQUS. The movement of the pincher is described by the
following equation:

yp(t) = −A
2

(1− cos(ωt∗)) (5)

The meaning of the different symbols used in these equa-
tions are listed in table 2 and in the list of equations 63.

ω = 1
DR2πf

T = 1
f

A = Ap + do
t∗ = t−

⌊
t
T

⌋
T

(6)

The contact between the pincher and the tube was mod-
eled as a surface-to-surface contact problem with finite
sliding contact tracking. Because of the use of a contact
problem it was not possible to use 8-node cells, 4-node cells
were used instead. Secondly the damping of the structure

3The floor of a: bac = max {m ∈ Z|m ≤ a}
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Symbol Meaning
yp Position of the pincher
f Pinching frequency
DR Duty Ratio of pinching (40% )
Ap Pinching amplitude (1mm)
do Pinching offset (0,1mm)
t Time
T Pinching period

Table 2 Meaning of the symbols used in equation 6

was modeled to be 8% using Rayleigh β-damping. This
means that the factor β = 0, 00367 in

C = βK (7)

is chosen such that ζ = β
2ω = 8% were C is the damp-

ing matrix of the structure and K is the elasticity matrix.
ω = 43, 4Hz is the lowest eigenfrequency of the structure
without contact with the fluid.

In the same ways as for the fluid domain tests were per-
formed to assess the influence of the simulation parameters
on the simulation of the structure domain. For these tests
the total kinetic energy and the total strain energy present
in the complete structure were compared. It could be con-
cluded that for the structure simulation the time step was
not that critical. In ABAQUS the convergence of the simu-
lation is aided by splitting each time step in smaller time
increments 4. It is sufficient to use 50 increments and 100
time steps per period. The influence of the grid is more
important. A grid with 100 length segments can only be
used for exploring calculations. For more accurate results
200 length segments are needed, it is not practical to use
more than 200 length segments because then the simulation
time becomes too long.

Coupling algorithm
The axial impedance pump is a fluid–structure interac-

tion problem. To couple the fluid solver and the structure
solver (Fluent and Abaqus) the IQN-ILS algorithm is
used [2]. This coupling algorithm solves the fixed point
formulation of the interface problem using quasi-Newton
iteration using an approximation of the inverse of the resid-
uals Jacobian matrix from a least-squares model.

At the interface between the fluid domain and the struc-
ture domain two conditions have to be met. First there is
the kinematic condition: the displacement of the interface
in the structure solver ~ds and the displacement in the fluid
solver ~df must be equal.

~df = ~ds (8)

Secondly there is the dynamic condition: the stress on the
interface calculated by both solvers has to be equal.

~nf · ~~τf = −~ns · ~~τs (9)

4It should be noted that this is not the case in FLUENT. The number of
time increments only influences the ABAQUS-simulation, not the FLUENT-
simulation.

In equation 9 ~~τ is the stress tensor and ~n is the unit normal
vector pointing outwards from the fluid domain and the
structure domain. The conditions that have to be met inside
both of the domains were already described: these are the
equations of conservation of mass and momentum in the
fluid domain and the conservation of momentum in the
structure domain.

Now the formulation of this problem can be simplified
considerably. With x the displacement of the entire fluid-
structure boundary and y the stress load (pressure + shear
stress) on it we can write the flow solver F and the structure
solver S in fixed point notation.

y = F (x) (10)
x = S (y) (11)

and in the root finding formulation

f(x, y) = F (x)− y = 0 (12a)
s(x, y) = S (y)− x = 0 (12b)

Then the residual of the FSI problem can be defined as

R(x) = S ◦F (x)− x (13)

where S ◦F (x) = x represents the complete FSI-problem.
Solving equation 13 can be done by using Newton-

Raphson iterations:

∂R

∂x

∣∣∣∣
xk

∆x = −rk (14a)

∆x = xk+1 − xk (14b)

where the residual is calculated as

rk = R(xk) = S ◦F (xk)− xk = x̃k − xk (15)

To solve equation 14a the Jacobian matrix of R needs to
be known. Since FLUENT and ABAQUS are black box
solvers this information is not available. In [15] a technique
to approximate a Jacobian of a function based on sets of
inputs and outputs of this function has been introduced.
Still, if the Jacobian of R is approximated, it is necessary
to solve the linear system 14a. It is more advantageous to
approximate the inverse of the Jacobian. It is not necessary
to approximate the inverse of the Jacobian of R explicitly,
it is sufficient to estimate the product of this matrix with the
vector ∆r = 0− rk = −rk.

xk+1 = xk +
̂(

∂R

∂x

∣∣∣∣
xk

)−1
∆r (16)

In quasi-Newton iteration k flow and structural equation
are solved resulting in x̃k = S ◦ F (xk) and the corre-
sponding residual rk. These ∆rk−1 = rk − rk−1 and
∆x̃k−1 = x̃k − x̃k−1 are then stored in the columns of the
matrices V k ∈ Rp×q and W k ∈ Rp×q .

V k =
[

∆rk−1 ∆rk−2 . . . ∆r1 ∆r0
]
(17a)

W k =
[

∆x̃k−1 ∆x̃k−2 . . . ∆x̃1 ∆x̃0
]
(17b)
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These matrices can than be combined with those from
previous time steps

V ′
k

=
[
V k nV . . . n−r+2V n−r+1V

]
∈ Rp×v

(18a)

W ′
k

=
[
W k nW . . . n−r+2W n−r+1W

]
∈ Rp×v

(18b)

This can have a very positive influence on the con-
vergence, however it is possible that if information from
too many time steps is reused the convergence is slowed
down, because it is possible that information from time step
n− r + 1 is not longer relevant in the present time step.

Now the vector ∆r = −rk can be approximated by a
linear combination of the known ∆ri in matrix V ′k.

∆r ≈ V ′kαk (19)

with α ∈ Rv×1 the vector of coefficients of the decom-
position. Since generally p ≤ v this is an overdefined set
and the least squares solution is calculated. For this pur-
pose the QR-decomposition of V ′k is calculated (Qk is an

orthogonal matrix and Rk an upper triagonal matrix)

V ′
k

= QkRk (20)

Qk ∈ Rp×v with Qk
[
Qk
]T

= I and
[
Qk
]T
Qk = I

Rk ∈ Rv×v

Now αk can be determined by solving the triangular
system

Rkαk =
[
Qk
]T

∆r (21)

Because it is possible that one of the ∆ri is (almost)
a linear combination of other columns of V ′k these small
elements have to be detected and if one is present, the
corresponding columns of V ′k en W ′k have to be removed.
Otherwise the equation corresponding to that row of Rk

cannot be solved during the back substitution.
Now the ∆x̃ corresponding to ∆r can be calculated

∆x̃ = W ′
k
αk (22)

from equation 15 it follows that ∆r = ∆x̃−∆x. Sub-
stitution of equation 22 finally results in

∆x = W ′
k
αk −∆r. (23)

Equation 23 can be seen as a procedure to calculate the
product of the approximation of the inverse of the Jaco-
bian and a vector ∆r = −rk since it allows for ∆x to be
approximated for a given ∆r.

∆x =
∂̂R

∂x

∣∣∣∣
xk

∆r = W ′
k
αk + rk (24)

It can be proven that for the part of ∆r that is in the span
of the columns of V ′k Newton iterations are performed
while Gauß-Seidel iteration are used for the part of ∆r

perpendicular to V ′k. Since two vectors are needed to form
the matrix V k, a relaxation with factor ω is used in the
second iteration of the first time step (or, if no information
from previous time steps is used the second iteration of
every time step).

Fluid structure interaction
Tests have been performed to assess the influence of

the simulation parameters on the whole model. Special
attention has been given to the top of the pressure wave
on the interface because one of the objectives was to get
an idea of the numerical dissipation. This is illustrated
in figure 6. In figure 7 the result of such an analysis is
represented, it becomes clear that a relatively high number
of time steps is necessary for the simulations. As a pactical
maximum 400 time steps per period is accepted. Based
on this investigation the conclusions that were drawn from
the tests on the structure domain and on the fluid domain
separately were confirmed.
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Figure 6 Illustration of the algorithm used to track the top of
the pressure wave

The optimization
First the model described in the last section was opti-

mized for mass flow with respect to frequency using an
iterative method. Then this optimal frequency was investi-
gated further.

The optimization was done in three steps.
In the first step the most interesting region was deter-

mined using 4 period simulations with a coarse grid and
a low number of time steps per period. The mesh of the
fluid domain consisted of 50× 10 elements and the grid of
the structure domain consisted of 100× 12 linear elements.
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Figure 7 Result of the following of the top of the wave for
simulations with a different number of time steps per period

and a grid with 100 segments in the length.
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Figure 8 Optimization of the model

The number of ABAQUS increments was set to 50 for 100
time steps per period. It is clear that these parameters do
not offer optimal accuracy but they allow for manageable
duration of simulation.

In a second step the number of simulated periods is
increased to 8 periods, the size of the grid and the time
step size stays the same. In this step the presumption was
confirmed that the highest mass flow was obtained for the
actuation frequency f = 13Hz.

In the last step of the optimization process the grid was
changed to a 200 × 10 grid in both the structure domain
and the fluid domain. The number of time increments per
time steps in ABAQUS was always between 40 and 120. Per
period 400 time steps were done. Thus the numerical errors
were brought to a minimum within practical possibilities
of calculation time. After 16 periods steady state is not yet
fully attained. It is clear though that the mass flow of 80 gs

Loumes reported [10] from another numerical research will
not be attained, nor will the 20g/s Hickerson [4] reports.
The main reason for this might be that the pinching duty ra-
tio percentage of the period the pincher is actually moving)
is a lot higher than the duty ratio of 10% that was used by
Loumes. Hickerson already reported the strong impact of
the duty ratio for the single layer axial impedance pump.
It was attempted already to use a duty ratio of 20% but
this did not result in beter performance, this does not mean
however that it is useless to do a more elaborate study of
the influence of the duty ratio.

Analysis
Energetic

The analysis of the axial impedance pump was done.
First the energetic analysis of the pump is performed based
on the 14th period. It becomes clear that there are two
problems that negatively influence the energy performance
of the pump. First of all the power delivered by the pincher
to the system is not very large. A lot of the power ‘flows
back’ to the pincher when the structure exercises force on
the retracting pincher. A second problem is that although
the energy is well distributed between the structure and the
fluid 5 the energy that is transported to the fluid is not well
converted in pumping power.

Pincher

432.10−5J318.10−5J

Structure Dissipation

41.10−5J

Fluid Dissipation

Pumping: 7.10−5J

Figure 9 Symbolic representation of the energy flow from the
pincher to the fluid

Wave intensity analysis
Wave intensity analysis is a analysis technique based

on the method of Riemann characteristics [12]. For this
technique one dimensional equations are used that are
derived from the conservation of mass and momentum in
an elastic vessel. The pressure waves (static pressure p) on
the centerline and velocity waves (axial velocity u) on the
centerline in this vessel are described as the summation
of successive wavefronts that propagate forward and
backward through the vessel.

5since the density of both is the same one can only expect the energy
in both to be of the same order of magnitude
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Figure 10 Energetic analysis of the 14th period

The concept of a wavefront
It is very common in science and engineering to think
about a wave as a sinusoidal wave train, which is the
basis of the Fourier analysis method. For this technique
however one has to think of a wave more as a solitary
wave where several wavelets or wavefronts combine to
form the observed wave. The technological developments
just before world war II (planes, rockets) called for a way
to solve the problems that arise when the Mach number
becomes larger than unity (supersonic and hyper supersonic
problems). There was a need for a technique to describe
the propagation of a single shock wave.

The method of characteristics
The method of characteristics is a mathematical method
introduced by Riemann to reduce a hyperbolic partial differ-
ential equation to a family of ordinary differential equations
along which the solution can be integrated. The partial dif-
ferential equations that we will use this method on here are
the Euler formulations of the conservation laws in the one
dimensional elastic tube. For this analysis only the inviscid,
incompressible case is treated.

For a differential element of the tube the law of conser-
vation off mass demands that the change in volume of this
element is equal to the net volumetric influx in this element.

∂A

∂t
= −∂uA

∂x
(25)

In these equations A is the area of the tube’s cross section.
The expression for the conservation of momentum is

∂u

∂t
+

∂

∂x

(
u2

2

)
= −1

ρ

∂p

∂x
. (26)

By adding that the cross-sectional area of the tube can
be written both as a function directly of x and t and as a

function of p and x where p is a function of x and t itself
one can easily write an expression for the partial derivatives
of A:

A(x, t) = A(p(x, t), x)

⇒
(
∂A
∂x

)
t

=
(
∂A
∂p

)
x

∂p
∂x +

(
∂A
∂x

)
p(

∂A
∂t

)
x

=
(
∂A
∂p

)
x

∂p
∂t

(27)

Using equations 27 the system can be rewritten. ∂p
∂t + u ∂p∂x + A

( ∂A
∂p )

x

∂u
∂x = −u

( ∂A
∂x )

p

( ∂A
∂p )

x
∂u
∂t + 1

ρ
∂p
∂x + u∂u∂x = 0

The matrix of the coefficients of the x-derivative terms is[
u A

( ∂A
∂p )

x
1
ρ u

]

and has got the following eigenvalues: λ± = u±
√

A

ρ( ∂A
∂p )

x

.

Where the square root term has got the dimension of veloc-
ity. It is the wave speed defined by Bramwell and Hill.

c =

√
A

ρ

(
∂p

∂A

)
x

(28)

This means that we can write the eigenvalues as λ± = u±c.
What Riemann observed is that these eigenvalues define the
so-called characteristic directions. He found that if these
eigenvalues are real for a hyperbolic system of equations,
then the total derivative with respect to the time simplifies
considerably.

d

dt
=

∂

∂t
+
dx

dt

∂

∂t
=

∂

∂t
+ (u± c) ∂

∂t

Which means that the conservation equations can be rewrit-
ten, we obtain ordinary differential equations. dp

dt − (u± c) ∂p∂x + u ∂p∂x + ρc2 ∂u∂x = −u
( ∂A

∂x )
p

( ∂A
∂p )

x
du
dt − (u± c)∂u∂x + 1

ρ
∂p
∂x + u∂u∂x = 0

(29)

From system 29 ordinary differential equations along the
characteristics can be obtained. These equations can be writ-
ten in a very elegant manner by defining Riemann variables
R± ≡ u±

∫
dp
ρc

du

dt
± 1

ρc

dp

dt
= −uc

A

(
∂A

∂x

)
p

(30)

dR±
dt

= ∓uc
A

(
∂A

∂x

)
p

(31)

This equation illustrates the peculiar but very favorable
result of the method of characteristics: along the character-
istics (u± c) the partial differential equation can be solved
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for the Riemann variables by integrating an ordinary differ-
ential equation in time.

The beauty of this result is that, notwithstanding the
difficult mathematical operations necessary to reach it, the
physical interpretation is very intuitive. If one considers a
uniform vessel, u = 0 and

(
∂A
∂x

)
p

= 0 and perturbates this
at t = 0 then the Riemann variables remain constant along
the characteristics that propagate upstream with spread +c
(or rather in positive direction) and downstream with speed
−c. It is clear that the name wave speed makes perfect
sense for this c. If u 6= 0 the waves propagate upstream
and downstream with speed u± c. Perturbation waves are
carried away by the flowing fluid, if you throw a stone in a
flowing river you can see the ripples getting carried along
with it. If u ≥ c information does not travel upstream any
more.

To study what is happening at a particular location x
at time t we have to find the waves that intersect at (x, t),
then we can find u and p from the values of the Riemann
variables R±. Firstly the path of the wave depends on the
local velocity and the local velocity depends on the waves
arriving there. Secondly the wave speed depends on p, so
we have to solve integral equations to find p and u from the
values of R±.

In this work we avoid these mathematical problems by
assuming that c is constant. Then the expressions for p and
u become quite simple.

p =
ρc

2
(R+ −R−) (32)

u =
1

2
(R+ +R−) (33)

Intensity of a wave
The wave intensity method uses the theoretical results ob-
tained in the method of characteristics to study traveling
waves in vessels. In this study the concept intensity of a
wave dI is very useful and important.

From the definition of the Riemann variables we take
the difference equation and solve this for du and dp.

dR± = du±dp
ρc
⇒
{
dp = ρc

2 (dR+ − dR−)
du = 1

2 (dR+ + dR−)
(34)

Now we define the wave intensity dI at a point x as the
product of dp and du.

dI(t) =
dp(t).du(t)

dt.dt
=

1

dt2
ρc

4

(
dR2

+ − dR2
−
)

(35)

The wave intensity has got the very useful property that for-
ward waves have a strictly positive contribution and back-
ward waves have a strictly negative contribution. Thus, if
dI(t) > 0 the forward waves at (x, t) are bigger than the
backward waves, and vice versa. This means that by mea-
suring dp and du at a single site you can get information
about the wave phenomena in the vessel.

The dimension of dI is W
m2 and reflects the energy per

unit area carried by the wave as it propagates. The fact that
we can split dI means that we can assess the importance of
backward and forward waves at any time.

Water hammer equation
Equation 34 results in another very interesting relationship.
Not only is it possible to split dI in a positive part dI+ and
a negative part dI− that correspond with respectivally a
forward and a backward wave, it is also possible to split
du and dp in parts du+, dp+, du− and dp−. To do this
we make use of an expression called the water hammer
equation. If you pass from one forward characteristic to
another du and dp are bound by the backward characteristic
that intersects the two forward characteristic, this results
into equation 36a. In the same way the differences between
the Riemann variables in a backward wave are found, this
results in equation 36b.

dR− = 0 = du+ −
dp+
ρc

(36a)

dR+ = 0 = du− −
dp−
ρc

(36b)

Equations 36a and 36b give us the water hammer equations
or the Joukowski equations.

dp± = ±ρcdu± (37)

The wave hammer equation is a simple but usefull expres-
sion that express how closely p and u are linked to each
other. A change in u will result in a change in p, this is
illustrated by the water hammer effect that gave the water
hammer equation its name. It a pipe with flowing water is
suddenly closed this can cause a sudden pressure build up in
the pipe starting at the valve. The sudden decrease in speed
u causes p to rise, If the pipe is closed instantly the pressure
rise is given by integrating the Joukowski equation.

∆p = ρc∆u (38)

Using wave intensity analysis in this work
The results of the preceding analysis are used in two differ-
ent ways to study the axial impedance pump. It is used to
estimate the wave speed c in the tube using the loop method
and the functioning of the pump is studied by separation of
the forward and backward waves.

The wave speed in the tube was calculated using equa-
tion 28, the Bramwell-Hill definition of c. The water ham-
mer equation 37 allows a very elegant calculation of the
wave speed. If backward waves are absent all changes in
p and u are caused by forward waves. This means that
the water hammer equation results in a linear relationship
between p and u.

dp = ρcdu (39)
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This means that p is a linear function of u when only one
type of waves is present in a system (during a certain time
interval). Equation 39 allows the wave speed to be calcu-
lated if the density ρ of the fluid is known, c is simply the
slope of the straight pu-curve. Since this c is exactly the
Bramwell-Hill wave speed this allows a consitency check
of the study.

The wave speed was assessed in three ways:

1. Using the pu-loop method

2. Using the Bramwell-Hill equation

3. With the algorithm to track the top of the pressure
wave on the centerline

All three methods resulted in wave speeds very close to
2,25ms . This speed corresponds to f (l + al + aw) with f
the frequency, l the length of the tube, al the clearance of
the pincher from the end of the tube and aw is the width
of the tube. This gives a strong indication of the close link
between the wave speed and the resonance frequency.

The second way Wave Intensity analysis is used in this
work is for the visualisation of the fluid waves on the center-
line by calculating the wave intensity function dI . Without
it interpretation of figure 11 would be practically impos-
sible. By calculation the wave intensity figure 12 can be
obtained.

Figure 11 Pressure and velocity wave on the centerline at
timestep 6040

Fourier analysis
A second, and far more well-known, way to analyze

wave phenomena is the Fourier-method. In this work time-
varying spatial waves were investigated. To do this the
following procedure was followed:

1. The intensity of the Fourier-components of the wave
form in each time step is calculated. This gives a list
of wave numbers with corresponding amplitude.

2. These lists are compared for all time steps and the
two most important wave numbers over the complete
range of time steps are selected. The spatial waves
corresponding with these wave numbers are followed
over the time span.

Figure 12 Visualisation of the wave intensity dI on the
centerline at timestep 6040

Using this technique it became clear that the wave numbers
corresponding to the second and fourth harmonic of the
lenght are the most important. By looking at figure 13 one
can see that there is a slight hint of a standing wave in this
figure6 certainly in comparision with figure 14, this is again
a strong indication of the importance of the frequency of
actuation.

Figure 13 Phase and amplitude of the component with the
most important wave number for f = 13Hz

Furthermore the high amplitude of the higher wave num-
bers indicate that these play a role of importance in the
functioning of the pump.

Conclusion and suggestions for further inves-
tigation
Conclusions about the numerical model parameters

The number of time steps per period and the number
of grid cells needed are quite high. Although the average

6for a standing wave the frequency would be a square wave and the
amplitude a abs(sin)-function
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Figure 14 Phase and amplitude of the component with the
most important wave number for f = 12Hz

mass flow is reasonably well represented by a grid that
is coarser (100 length segments) and a lower number of
time steps (100 time steps per period) the amplitude of
the mass flow function is not well represented by these
simulations. This means these simulations can only by used
in ‘exploring’ simulations. The accuracy of the simulations
can be improved by increasing the number of time steps
per period to 400 time steps per period and by making the
grid finer to 200 × 10 in both the structure and the fluid
domain. The high number of time steps and the fine grid
that is needed make the simulation time high.

Conclusions about the physical parameters and sugges-
tions for further research

Even though a clear net positive flow was observed in
this study the contrast between the low mass flow that is
found in this work and the higher mass flows that were
reported by others [5, 10] suggests that also with this model
it should be possible to attain better results.

One of the most promising elements to investigate is
whether the performance could be improved by decreasing
the duty ratio, as suggested by the results of Hickerson [5].

A high number of parameters on the multi layer axial
impedance pump remain to be investigated. The width of
the pincher is reported to have a linear effect on the mass
flow[5], if the volume displaced by the pincher is increased
by 10%, so will the mass flow. Surprisingly, to the best of
our knowledge, there has been little investigation on the
place of pinching. It is clear that the tube has to be pinched
away from the center of the tube but there is no investigation
of the influence of the place of pinching on the pumping
performance.

Furthermore the influence of the geometrical parameters
of the tube should be investigated like the diameter to length
ratio or the thickness and flexibility of both the flexible and

the stiff layer.
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