
Proceedings of the ECCOMAS Thematic International Conference on 
Simulation and Modeling of Biological Flows (SIMBIO 2011)  
September 21-23, 2011, VUB, Brussels, Belgium 
_________________________________________________________________________________________________ 

SIMBIO 2011                                                                           
1 

 

 

 
 
Secondary Flows in Thoracic Aorta with Torsion 
 
Hiroshi Suito1,2, Takuya Ueda3, and Daniel Sze4 

 

1 Department of Environmental and Mathematical 
Sciences, Okayama University, 
3-1-1, Tsushima-naka, Okayama, 700-8530, Japan, 
suito@ems.okayama-u.ac.jp 
 
2 CREST, Japan Science and Technology Agency 

Kawaguchi, Saitama 332-0012, Japan 
 

3 Department of Radiology,  
St. Luke’s International Hospital, 
9-1 Akashi-cho, Tokyo, 104-8560, Japan 
takuedarad@gmail.com 
 
4 Department of Radiology,  

Stanford University, School of Medicine, 
Stanford, CA 94305, USA, 
dansze@stanford.edu

 
Abstract 
Numerical simulations of blood flow in thoracic aorta and in simplified spiral pipes are presented. Patient-
specific aorta shapes are used in a centerline-fitted generalized coordinate system in which the Navier–
Stokes equation is discretized using finite-difference approximation with immersed boundary/fictitious 
domain method. The main target of this study is long-term adverse events that occur after endovascular 
stent–graft treatment. The occurrence of swirling flow in the diastole phase is investigated using simplified 
shapes of pipes with curvature and torsion. 
Keywords: blood flow, numerical simulation, finite difference method, helical pipe. 
 
 
Introduction 

Thoracic endovascular aortic repair (TEVAR), or 
stent–graft treatment, has become widely accepted as an 
important option for treatment of thoracic aortic diseases. 
Many studies have proven the safety and efficacy of 
TEVAR with satisfactory short-term to mid-term 
outcomes. Nevertheless, even if the initial TEVAR 
treatment technically succeeds, some patients show 
recurrence and progression of disease many years after 
treatment[8][12]. Based on long-term follow-up 
examinations, such long-term morphological change and 
effects of hemodynamic flow apparently interact 
synergically. Constant pulsatile hemodynamic effects 
from blood flow apparently induce degeneration of the 
underlying aorta to cause its morphological change and to 
induce minor morphological changes that alter the 
hemodynamic state. These changes ultimately engender 
long-term adverse events. 

For this study, which investigates the effect of 
vascular hemodynamics on long-term adverse events, we 
considered patient-specific models of the thoracic aorta––
with and without aneurysms––as constructed from CT 
scans. The aorta is classifiable into a thoracic aorta and 
abdominal aorta, with several different characteristics. 
We specifically examine the thoracic aorta and the blood 
flow in it. 

From the viewpoint of computational methods for 
blood flow simulations, there are mainly two 

discretization strategies: unstructured and structured 
meshes. When one is trying to compute flows using 
structured meshes, the important issue is how to represent 
the geometry in the structured mesh system. Many 
investigations of this problem have been done. Those 
efforts are broadly classifiable into two categories: a 
body-fitted approach and an immersed boundary or 
fictitious domain method [4][5]. An advantage of body-
fitted mesh is its high accuracy near walls, although mesh 
generation near a complex-shaped boundary is often 
difficult. It can achieve high accuracy if one of its 
coordinate axes coincides with the main flow direction. 
In contrast, in the immersed boundary/fictitious domain 
method, mesh generation is simple because a uniform 
orthogonal mesh is useful and the wall geometry is 
represented by a distribution of a characteristic function. 
In this study, a hybrid approach between the body-fitted 
and immersed boundary/fictitious domain method is 
adopted as described in the next section. It can be 
expected that higher accuracy is attainable at reasonable 
computational cost using this hybrid approach. In the 
following sections, patient-specific simulations are 
presented followed by numerical tests using simplified 
geometry for investigating the effects of torsion. 
 
Representation of aorta morphology  

Procedures for the reconstruction of aorta 
morphology from medical images are the following: 
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i) Centerline and radius data from CT images 

Median axis transform technique [6] is applied to 
extract the (x,y,z)-coordinate of the centerline and 
radius at position s from CT images, where s is a length 
along the centerline from the proximal end of aorta, as 
presented in Fig. 1. 

 
Fig. 1 Centerline and cross-sections. 

 
ii) Generation of a centerline-fitted mesh 

A finite difference mesh system (ξ,η,ζ) is generated, 
one coordinate axis of which is nearly parallel to the 
aorta centerline. Therefore, (ξ,η,ζ) is a generalized 
coordinate system, which represents the coordinate 
transformation from computational space (ξ,η,ζ) to 
physical space (x,y,z): 

 

            

 
The ζ- axis is set not to be strictly parallel but to be 
nearly parallel to the centerline, which means that the 
original centerline geometry is slightly smoothed by the 
Gaussian filter. This treatment avoids numerical 
instabilities arising from severe skewness of finite 
difference meshes.  

     
 

Fig. 2 Centerlines and finite-difference meshes. 
 

Three examples of finite difference meshes are presented 
in Fig. 2 with the original centerlines extracted in the 
previous step. In this figure, only the planes at which ξ  
and η takes the minimum value and ζ takes the minimum 
and maximum values are shown. The centerline color 
represents curvature distributions. 

 
iii) Generation of characteristic functions 

On each mesh point defined in the previous step, the 
characteristic function is computed, which takes the value 
0 in the aorta and value 1 out of the aorta. It varies 

gradually near the boundary with certain smoothness. 
The value of the characteristic function  is 
computed as 

 

where  is a distance between the point  
and the nearest point  on the centerline,  is a 
radius of the aorta at , and  is a smoothness 
parameter on the boundary. Figure 3 shows contour 
surfaces of the characteristic functions  
at  with finite difference meshes constructed in 
the prior step. 
 

     
 

Fig. 3 Contour surfaces of characteristic functions. 
 

Numerical methods 
As governing equations, incompressible Navier–

Stokes equations are used with the continuity equation 
 

 

                            
where u, p, t,  and  respectively denote 
velocity, pressure, time, density and kinematic viscosity. 
The last term of the Navier–Stokes equations is a drag 
force term that is proportional to the fluid velocity 
because of the immersed boundary method. Because this 
force acts only out of the aorta, the flow velocity out of 
the aorta becomes zero and the aorta wall shape is 
represented. Drag force parameter is taken as , 
where is a time step. Blood is assumed to be a 
Newtonian fluid because we are considering a flow in 
large vessels. The governing equations are discretized on 
the finite difference mesh and SMAC method is applied 
for time advances in which a Poisson equation for the 
increment of pressure field is solved to satisfy the 
conservation of mass. The Generalized Product type Bi-
Conjugate Gradient method is adopted for solving the 
Poisson equation. At the proximal end, a pulsating 
velocity profile is given. 

 
Numerical results 

After computing the time dependent flow fields, we 
compute the time-averaged flow field and wall stresses 
from them. It is apparent that the stress distributions are 
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strongly dependent to the aorta morphology. Several 
reasons why such a large difference occurs can be 
considered. One possibility is the existence of swirling 
flow during the diastole phase, as portrayed in Fig. 4. 

 

 
 

Fig. 4 Swirling flow in diastole phase. 
 

Generally speaking, flow is almost annihilated in the 
diastole phase. Therefore, the existence of this swirling 
flow can be a key point in finding the critical parameter 
for the difference in stress distributions among 
individuals.  
 

  
     Side view               Top view 
 

Fig. 5 Instantaneous streamlines in late systole phase. 
 

Fig. 5 shows instantaneous streamlines in late systole 
phase. It can be seen that a swirling flow appears 
immediately downstream of the tortuous part of the 
vessel. 
 
Numerical tests in simplified geometry  

From comparison of the flow fields of several 
examples of thoracic aorta morphologies presented in the 
previous section, it has been inferred that torsions of the 
centerline are a candidate of the critical parameter of the 
existence of swirling flow in diastole phases. Torsion is 
defined as a variation of the curvature in the following 
Frenet–Serret formula: 

 

where t denotes tangential, n denotes normal, and b 
denotes bi-normal vectors, respectively. In addition, χ and 
τ respectively signify the curvature and torsion. Normal 
vector n is directed to the center of the curvature. If the 
normal vectors near point s are on the same plane, then 
the torsion at s is zero. We use simple spirals defined as 

 

 
 

for which the tangential, normal, and bi-normal vectors 
become 
 

 
 

and the curvature and torsion are calculated as 
 

 
 

In those equations, a and h are arbitrary parameters. 
Figure 6 portrays four spirals with the sets of χ and τ. 
 

     
             

 

 
 

 
Fig. 6 Simple spiral tubes. 

 
Secondary flow is computed by subtracting the axial 

flow  from the total flow u, as 

, 
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which plays an important role in terms of wall stresses. 
Figure 7 and Fig. 8 respectively show secondary flow 
patterns in the two cases of τ =5.0 and τ =0.0. 

 

   
          early systole           peak systole 
 

   
       early diastole            late diastole 
 

Fig. 7 Time-sequence of secondary flow for τ =5.0. 
 

 

   
          early systole           peak systole 
 

   
       early diastole            late diastole 
 

Fig. 8 Time-sequence of secondary flow for τ =0.0. 
 
In both cases, twin vortices of opposite signs are visible 
in the early systole phase. These vortices are called 
Dean’s vortices, which are common phenomena for flows 
in curved tubes. The center of the curvature exists on the 
right-hand-side of each figure. The centrifugal force is 
acting in the left-hand direction. In the peak systole 

phase, the Dean’s vortices are split into smaller vortices 
in both cases. 

However, the flow patterns in the diastole phase differ 
completely for the two cases. In the zero-torsion case, 
secondary flow maintains symmetry, which means that 
the torque exerted on the wall is zero. However, in the 
non-zero torsion case, the vortices generated in the 
systole phase merges and one grows larger. In the late 
diastole phase, only one vortex survives. Therefore, a 
certain amount of the torque is exerted on the wall, which 
has the effect of making the torsion larger. 
 
Conclusions 

Through computations of the flows in realistic aorta 
morphologies and in simplified spiral tubes, the 
importance of the torsion of aorta has been shown. All 
patients have certain curvature in their thoracic aorta 
because it projects upward from the heart and then arches 
downward. However the values of torsion can vary 
widely among patients. Results described herein suggest 
that the torsion is a more important parameter in 
considering the relation between aorta morphologies and 
the hemodynamics in them. 
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