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Abstract
The flow patterns occuring the upper human airways were investigated at a realistic bronchial tree model which incor-
porates six bifurcating generations. The flow was investigated by means of computational fluid dynamics. Therefore,
oscillatory flow at varying Reynolds and Womersley numbers was applied. Different flow conditions were simualated
including normal ventilation as well as high frequency ventilation conditions. For validation of the numerical re-
sults, particle image velocimetry (PIV) measurements of the main branches are used. The numerical results were in
good agreement with the PIV results. The numerical simulation then provides information about the flow patterns in
the lower branches and the variation at different tidal volumes and ventilation frequencies. Furthermore, the three-
dimensional structure of emerging secondary flows was analyzed. The secondary vortices strongly depend on local
curvature but are not influenced by uptstream flow or geometry, respectively.
Keywords: Lung, airways, numerical simulation, 3D model, secondary flows, mass transport, flow patterns.

Introduction
For patients with severely injured lungs mechanical

ventilation can be a life saving treatment. However, as ap-
plied over a longer period of time, ventilator induced lung
injuries may occur. Therefore, improved methods of venti-
lation, so called ’protective ventilation‘ should be applied.
The first step of an improved ventilation strategy is a com-
prehensive understanding of the lung flow and mass trans-
port under normal, healthy breathing conditions.

Therefore, a realistic, three-dimensional model of the
bronchial tree has been generated. The model starts with
the trachea and bifurcates down to the 6th generation. The
geometry is based on data from Weibel [23] and Horsfield
[11] as will be descrubed in the subsequent se Care was
taken for model generation since a realistic geometry is
crucial. In many studies the airway geometry is strongly
simplified. Symmetric models have been frequently used
(e.g. [9, 13, 18, 25]). The study from Liu et al. [17] has
shown that especially symmtric geometry leads to asym-
metric distribution of mass within the airways. Very fre-
quently, only a single bifurcation model has been em-
ployed for simplicity [7, 10, 16, 20]. For a first impression
of bifurcating flow behavior that should be sufficient. Typ-
ical flow patterns such as skewed velocity profiles [1] and
secondary vortices could be shown already for these sim-
ple models. Since the impedance of the lower generations
is missing, information about mass transport mechanisms
into the lower branches as well as the impact of the lower

branches on the main airways remains unknown. Bauer
and Brücker [2] have shown for a 6 generation model that,
especially for higher Reynolds numbers, the influence of
the branching geometry becomes more important. Differ-
ent pressure losses dominate flow partitioning. The im-
pact of different ventilation frequencies and tidal volumes
(Reynolds numbers) on the flow patterns , especially in the
lower generation was investigated in the study presented
here. Therefore, numerical methods were employed using
the open source code OpenFoam V.1.51 dev. The threedi-
mensional structure of the emerging secondary flow occur-
ing in the human lung airways will be further investigated
in detail. So far, secondary structures in the human lung
have been extensively investigated by Fresconi and Prasad
[9]. However, their findings were restricted to 2D, planar
measurements. They have presented the vortex develop-
ment during one breathing cycle and for different Reynolds
numbers.

Numerical model
Mathematical model

The governing equations for incompressible, unsteady
fluid flow are the continuity equation and the Navier-
Stokes-equations. In tensor notation they are

∂ui

∂xi

= 0, (1)
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whereui and uj are the components of the velocity
vector,p is the pressure,ρ andν the fluid density and kine-
matic viscosity, respectivly. Here, the Einstein summation
is used so that the repeated index implies summation. Fur-
thermore, an additional volume force is considered here
which includes the gravityg since for comparison to the
experimental results, the properties of the experimental liq-
uid (water-glycerine) were invoked.

Numerical Methods
For numerical simulation of the lung flow, the Finite

Volume Method (FVM) was applied. Therefore, the equa-
tions 1 and 2 were integrated over a control volume and
then discretized. The FVM requires a decomposition of the
computational domain into grid cells. The discretization of
the governing equations is invoked at the knots of the nu-
merical grid. After discretization, a linear set of equations
is received which are solved by the solver GAMG (Geo-
metric Agglomerated algebraic MultiGrid solver) which is
implemented in OpenFoam. This solver first coarsens the
grid to approximate a fast starting solution for a finer grid
[3]. All methods applied for numerical flow simulation are
summarized in Tab. 1

Table 1 Numerical methods for simulation of the lung flow.

Mathmatical operation Numerical method

discretization of convective terms Gauss upwind, 1st order

discretization of time derivatives backward differencing

pressure-velocity coupling PISO algorithm

The PISO algorithm mentioned in table 1 stands for
Pressure Implicit with Splitting of Operators [22]) whereat
two interpolation loops were employed, here. The itera-
tions, necessary to calculate the solution of each time step,
were stopped as a truncation error of10−8 was reached.

Geometry
The geometry of the airway model is based on two dif-

ferent data sets. The radius of the curvature with its origin
at the daughter branch (see. Tab. 2) as well as the transi-
tion zones between the parent and the daughter branches
are based on Horsfield [11] data. For the diameters and
lengths of the generations, data from Weibel [23] were
taken which apply for an ideal bifurcation of the lung. In
order to create an asymmetric geometry the branch lengths
lr and ll in each bifurcation relate to each other accord-
ing to the golden ratio withlr/ll ≈ 1.62. The mean value
of the branch lengthl = (lr + ll)/2 in each bifurcation
corresponds to the value given by Weibel. Each daughter
bifurcation is connected to the parent branch by rotating
the plane of the daughter branches by90◦ with respect to
the previous orientation. The only exception is the first
generation which is connected to the trachea by a rotation
angle of60◦. All geometrical data which were used for the

design of the lung model are summarized in Tab. 2. For
reference, the variables used in Tab. 2 are presented in Fig.
1.

Rl Rr

D

rl
ll

Figure 1 Nomenclature of the bifurcations.

Table 2 Geometrical data of the lung model in mm.

Gen. D ll lr Rl Rr

0 18.0 150

1 12.2 36.8 59.3 36.6 55.0

2 8.3 14.7 23.6 52.2 29.0

3 5.6 5.8 9.4 33.2 45.0

4 4.5 9.8 15.8 17.8 18.7

5 3.5 8.2 13.3 21.1 21.8

6 2.8 6.9 11.2 25.0 31.2

The model geometry was discretized by 1,926,391
tetrahedral cells which form an unstructured mesh. The
mesh was created with ICEM CFD V.12 from ANSYS.
Figure 2a) depicts the discretized lung model. The en-
larged views show the grid structure of the inlet boundary
with a diameter of18 mm (Fig. 2b)) and one of the outlet
boundaries (Fig. 2c)) with a diameter of only2.8 mm.

According to Calay et al. [4] the lung bifurcation
should be discretized by about 100,000-150,000 cells per
bifurcation. With a bifurcation number of 63 we receive a
number of about 30,000 grid cells per bifurcation. There-
fore an additional larger gid with 15 million cells (approx.
240,000 cells per bifurcation) is created for comparison.

Characteristic flow parameters
The flow in the upper airways of the human lung can

be defined by two non-dimensional characteristic numbers,
the Womersley numberα and the Reynolds numberRe.
The Womersley number represents a non-dimensional fre-
quency in oscillatory tube flow defined by the breathing
frequencyf , the kinematic viscosityν of the fluid and the
diameterD of the trachea (equation 3).

αtrachea =
D

2

√

2 · π · f

ν
. (3)

It describes the unsteady nature of fluid flow in re-
sponse to an unsteady pressure gradient and is a ratio of
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a) c)

b)

Figure 2 Numerical grid structure of the lung model, a) complete lung model, b) enlarged view of the grid structure of the inlet
boundary (top of the trachea), c) enlarged view of the grid structure of one of the outlet boundaries (distal end of the 6th

generation).

inertia to viscous forces in oscillatory flows [24]. For very
small Womersley numbers (α < 3), quasi-stationary flow
can be assumed with velocity profiles similar to a laminar
parabolic profile with the flow maximum in the pipe cen-
ter [21]. For increasingα the axial velocity profiles are no
longer parabolic and the bulk flow is phase-shifted in time
relative to the oscillating pressure gradient [21]. Conse-
quently, the velocity maximum is shifted to the tube wall
and the velocity profiles are characterized by an annular
shape. In order to keep the Womersley numbers constant
for the same geometric scale in model and original, the ra-
tio of frequency to viscosity has to be kept constant.

The Reynolds number of the flow in the trachea indi-
cates the laminar or turbulent character of the flow. It is
defined as the ratio of inertia to viscous forces (equation
4).

Retrachea =
ρU2A

η U
D

A
=

U · D

ν
. (4)

In equation 4ρ denotes the fluid density,η the dynamic
viscosity,A is the cross section area, D the diameter of the
trachea andU denotes the characteristic velocity which is
the maximum of the mean axial velocity over the cross sec-
tion of the trachea in this case. The maximum velocity de-
pends on the tidal volumeV and the oscillatory frequency
f according to equation 7.

U =
V

2
·

2 · π · f

Atrachea

=
4 · V · f

D2
. (5)

Hence, the Reynolds number can be written as

Retrachea =
4 · V · f

D · ν
. (6)

The characteristic flow parameters which were chosen
for the subsequent study are summarized in Tab. 3.

Table 3 Values of the characteristic flow parameters used for
numerical flow analysis.

Frequency (Hz) Tidal volume (ml) Re α

0.15 500 2000 3.0

0.5 75 1000 5.5

1.5 75 3000 9.5

Boundary and Starting conditions
The linear set of equation can only be solved if both,

starting and boundary conditions are available. The com-
plete region of interest is initialized with zero pressure rel-
ative to the ambient pressure and zero velocity. For bound-
ary conditions two different types of boundary conditions
are used:

• Dirichlet boundary condition: a value of the variable
is given

• Neumann boundary condition: a derivative of the
variable is given

Boundary conditions had to specified for the inlet, the
outlets and the wall, whereat the lung model contains one
inlet and 64 outlets. The positions of the boundary condi-
tions are depicted in Fig. 3.

The boundary conditions used for the simulation of the
human lung flow are summarized in Tab. 4.
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Inlet

Outlets
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Figure 3 Lung model with the positions of the boundary
conditions.

Table 4 Boundary conditions for the simulation of human
lung flow.

Boundary Variable Condition Type

Inlet
velocity u u = u

max
· sin(ωt) Dirichlet

pressurep n · ▽p = 0 Neumann

Outlet velocityu n · ▽u = 0 Neumann

pressurep p = 0 Dirichlet

Wall velocity u u = 0 Dirichlet

pressurep n · ▽p = 0 Neumann

The values given in Tab. 4 apply perpendicular to the
boundaries. The maximum velocityumax was determined
according to the following equation

Umax =
V

2
·

2 · π · f

Atrachea

=
4 · V · f

D2
. (7)

In equation 7V denotes the tidal volume,f is the ven-
tilation frequency,A is the cross section area of the tra-
chea andD denotes the diameter. The velocity was applied
as uniform value at the inlet boundary. Therefore, the in-
flow tube (trachea) was lengthened to a total tube length of
20 cm in order to receive a more developed flow at the first
model bifurcation. The original tube length of the model
was12 cm. According to Durst [6], the entrance lengthl to
receive fully developed flow in a tube depends on the tube
diameterD and the Reynolds numberRe:

l =
[

0.619
1

6 + (0.0567Re)
1

6

]
1

6

D. (8)

Equation 8 is valid for laminar pipe flow in the range of
0 < Re < ∞ [6]. For a Reynolds number ofRe = 2000
and a tube diameter of18 mm an entrance length of22 cm
would be necessary to receive fully developed flow. Hence,

the tube length of the trachea in the numerical model rep-
resents a very good compromise between reliable results
and numerical effort due to a large geometry, which needs
to be discretized.

The numerical simulations were performed on the PC
Farm Deimos of the ZIH (Center for Information Services
and High Performance Computing) at the Technische Uni-
versität Dresden. Altogether, Deimos consists of 2576 pro-
cessor cores [12] of which 64 were used. The time step size
was varied between10−4 s and5 ·10−4 s depending on the
oscillatory frequency of the lung flow. With this time step
size the average duration of the calculation of one period
is about48 h.

Validation of the numerical results
Comparison of different mesh size solutions

Figure 4 Contours of velocity magnitude in a center cut
through the main bifurcation of a) a 15 million cell

tetrahedral grid and b) a 2 million cell tetrahedral grid.
Locations of the cut sections A-A and B-B are added for

reference.

As reported by Calay et al. [4]), the spatial resolution
of the grid used is critical for acurate results. Hence, a
15 million cell tetrahedral grid is used to repeat one of the
presented simulations. The stucture of the mesh and its
boundaries are identical to the 2 million cell mesh shown
in 2. The additional cells are distibuted evenly in the com-
putational domain in order to enhance the spatial resolution
of the inner part of the trachea and the lower branches. The
starting solution for the computations with the 15 million
cell grid is interpolated from the 2 million cell grid and
therefore almost identical. The timestep size is adjusted
with respect to a constant Courant numberCo of 0.2 for
both cases. In equation 9,ū denotes the velocity magni-
tude in the cell,∆t is the timestep size and∆l the cell
length in the direction of the flow. The value of0.2 is cho-
sen due to stability reasons caused by the oscillating inlet
boundary condition.

Co =
ū∆t

∆l
(9)

Figure 4 shows the contours of the velocity magnitude
in a center cut through the main bifurcation of a) the 15
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million cell tetrahedral grid and b) the 2 million cell tetra-
hedral grid. The direct comparison shows that the principal
features of the flow before and after the bifurcation are in
good agreement. The velocity magnitude in both cases is
nearly identical. Since the wall resolution of the 2 million
cell grid is sufficient, no differences are to be expected to
the 15 million cell grid near the walls.

Differences between the presented velocity fields are
obvious in the center of the flow before the first bifurca-
tion. Here the flow field of the 15 million cell grid shows
an asymmetry with higher velocities on the left side. This
asymmetry is not visible on the 2 million cell grid due to
the coarse spatial resolution. Another obvious difference
is the influence of the coarse spatial resolution in the lower
right part of both pictures. Here the improved spatial reso-
lution in figure 4 a) leads to more visible flow details.

 1
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 1.6
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 2.2

 0  0.2  0.4  0.6  0.8  1
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m
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Figure 5 Velocity profiles in section A-A for the 2 (+) and the
15 (x) million cell grids
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Figure 6 Velocity profiles in section B-B for the 2 (+) and the
15 (x) million cell grids

Since there are 2 regions with visible differences, those
regions were sampled and compared in detail. Figures 4
a) and b) show black sample lines which are normal to the
vector of the mean velocity. Figures 5 and 6 show the ve-
locity profiles on these lines over a dimensionless diameter
d/D in m/s. In the figures,+ represents the sampled val-
ues of the 2 million cell grid andx denotes the values for

the 15 million cell grid, the sloid lines represent curve fits
through the discrete poits. In figure 5 it is obvious, that
the difference in the absolute values of the velocity mag-
nitude is minimal. The asymmetry visible in figure 4 can
be seen here as well. The profile of the 15 million cell grid
is asymmetric and slightly m-shaped. In general, both pro-
files are in good agreement, although 15 million cell grid
shows more details of the flow. Figure 6 shows the veloc-
ity profile in section B-B. The principal shape of the pro-
file and the velocity magnitude are almost identical. Again
minimal differences between the two profiles are visible.
Nevertheless both are again in good agreement.

In summary, the investigation of the influence of the
spatial resolution shows that the solution from 2 million
cell grid is accurate enough for the problem. All the prin-
cipal flow features know from literature and the experiment
are evident. Although the 15 million cell grid shows more
details of the flow it is reasonable to assume that the 2 mil-
lion cell grid is fine enough to investigate variations of the
boundary conditions in the order of magnitude used in this
investigation. Due to the long computation times (approx 6
weeks on 256 cores) the other presented cases are solutions
from the 2 million cell grid.

Validation of the numerical results
For validation of the numerical code, a comparison to

experimental PIV-results of the first bifurcation is given.
The experiments were carried out by Adler and Brücker
[1]. First, the case of normal breathing under rest condi-
tion is chosen. The Reynolds number isRe = 2000, the
Womersley number isα = 3 (compare Tab.??). Figs. 7
and 8 depict the velocity contours and profiles in the center
plane of the main branches for inspiration and expiration,
respectively.

a) b)

Figure 7 Velocity contours and profiles during peak
inspiration, PIV - results (a), numerical results (b),

Re = 2000, α = 3.

The comparison of inspiration shows good agreement
of PIV-measurements and numerical results (Fig. 7). The
regions of high velocity have similar extensions. During
inspiration the acceleration of the flow ahead of the bifur-
cation is found in both cases. A small deviation occurs for
the velocity profiles which have higher gradients near the
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a) b)

Figure 8 Velocity contours and profiles during peak
expiration, PIV - results (a), numerical results (b),

Re = 2000, α = 3.

wall in the PIV - measurements. A possible explanation
could be the numerical grid, which might be too coarse to
fully resolve the stokes boundary layer, especially in the
lower branches. Furthermore, the peak velocity at the top
of the trachea is higher than in the numerical calculation,
probably due to a shorter entrance length of the numerical
model.

During expiration (Fig. 8) the numerical and experi-
mental results are still in acceptable agreement. The ve-
locity is in a similar range for both cases and the velocity
profiles are characterized by a comparable asymmetry.

The PIV-measurements suggest a separation region in
the trachea which does not occur in the numerical cal-
culation. However, this separation region was only ob-
served experimentally for this single case of Re andα
given above. Therefore, it is not assumed to be typical for
the flow in the lung model and the numerical data should
be correct for this case.

The cross sectional flow is compared for one case of
high frequency ventilation withRe = 1000 andα = 5.5.
Fig. 9 shows the flow patterns in a cross section of the
trachea during maximum expiration. Fig. 9 a) presents the
experimental result, Fig. 9 b) the numerical result, whereat
the color coded contour of the vorticity is superposed with
the cross sectional stream lines.

Qualitatively as well as quantitatively there is a good
agreement between both results. The double vortex pair
occurs in both cases at even similar strength. The vortex
structure of the numerical simulation is more symmetric
than the experimental result and the vortex shapes vary
slightly.

To conclude, based on the validation results, the nu-
merical simulation can be used to predict the flow behav-
ior in regions, at which experimental data are not available.
There are small deviations concerning the velocity profiles
in the first daughter branch. These can have different rea-
sons. First, the numerical grid is quite coarse consider-
ing the cross sectional resolution of the flow. Thereby,
small structures were probably not fully resolved. Sec-

a) b)
x

z

Figure 9 Vorticity contours, color coded, where blue
indicates clockwise (negative) and red counterclockwise

(positive) sense of rotation, respectively, superposed are cross
sectional streamlines,Re = 1000, α = 5.5, (a) PIV - results,

(b) numerical results.

ond, the size of the interrogation areas, chosen for the
PIV-evaluation, also determines the resolution of the ex-
perimental results. Here, the distance of two grid points
was about1.1 mm. Hence, the trachea was resolved by
approximately 16 grid points. Since this resolution is also
quite coarse, it is possible that small flow details are not
resolved due to the averaging of the velocity field across
one interrogation area. Nevertheless, both, experimen-
tal and numerical results are in good agreement with re-
sults from other researchers presented in the literature, e.g.
[4, 5, 8, 14, 15, 19] and typical flow phenomena could be
shown. Therefore the validated numerical model can be
used for further investigations.

Numerical results
Numerical results are given for the velocity distribu-

tion by iso-surfaces of the velocity magnitude. Fig. 10
shows the surface of constant velocity vector magnitude of
0.95m/s for peak inspiration (a) and peak expiration (b)
during normal breathing.

During inspiration, the velocity seems to increase from
the trachea down to the 3rd generation as marked by the
increasing area which is occupied by the iso-surface (Fig.
10a)). This can be explained by the slightly decreasing
total cross section area down to this generation. Ahead
of each bifurcation, a further increase of velocity occurs,
which is also caused by the contraction of the flow at this
point. The orientation of the iso-surface changes strongly
from generation to generation. The fluid is always pushed
to the outer walls of the curvature as already found in the
experiments. The distribution between left and right main
branch is asymmetric which is obviously a consequence of
the smaller curvature radius of the right main branch and
hence, a higher pressure loss.

At the first glance, the iso-surfaces of the same velocity
during expiration show a similar distribution as for inspi-
ration (Fig. 10b)). Even these branches of the 4th genera-
tion which were characterized by higher velocities during
inspiration show enlarged contour surfaces during expira-
tion. This means that the pressure loss difference between
the branches is the same for inspiration and expiration.

However, a closer look at the iso-surfaces reveals their
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a) b)

Figure 10 Iso-contours of the velocity magnitude for0.95m/s for peak inspiration (a) and peak expiration (b),Re = 2000,
α = 3, the complete lung geometry is superposed.

different shape during inspiration and expiration. During
inspiration, the contours are curved following the branch
geometry, while during expiration, the contours appear to
run straight through the branches. As already observed in
the experiments, the location of the same velocity contour
has shifted. Additionally, the three-dimensional shapes of
the iso-surfaces have changed. In the left branch of the
first generation the surface has the largest extension in z-
direction (during inspiration). In the trachea, the maximum
extension of the iso-surface occurs in the x-y-plane. In
contrast, during expiration, the directions of the maximum
extension are twisted. In the first generation, the maximum
extension occurs in the x-y-plane, in the trachea, it occurs
in the perpendicular y-z-plane.

The transitions from expiration to inspiration and from
inspiration to expiration are shown in Fig. 11 a) and b),
respectively. The figures represent the iso-contours of the
y-velocity, where red contours mark positive flow direc-
tion (downwards into the lung), while blue contours mark
negative flow direction (upwards). The phase shift of the
flow during the transition times can be clearly seen. Fig.
11 reveals a characteristic structure of the transition zones.
Typically, the return of the flow is initiated in the low iner-
tia zones, in particular, zones of lower velocities. During
change from expiration to inspiration (Fig. 11a)) two pairs
of characteristic zones emerge in the trachea. On the left
and right sides, the flow is directed into the model (red
structure), i.e. the inspiration has already started, whereas
at the front (anterior) and rear (posterior) center of the tra-
chea, expiration (blue structure) still takes place. A com-
parison to the iso-contour during maximum expiration re-
veals that the maximum flow velocity occurs in the y-z-
plane. Hence, the plane of lower inertia flow is the x-y-
plane in which the change of flow direction is initiated.

During change from inspiration to expiration (Fig.
11b)) the flow structure is completely different. The core
flow is still directed into the lung, whereas at the wall an
annulus of fluid is already directed upwards.

Considering the secondary flows in a realistic lung

geometry, their structure varies strongly even within one
branch. Experimentally, the flow in two selected planes in
the trachea and left branch of the first generation was anal-
ysed and presented above. It was assumed that these sec-
ondary flow structures are representative for the selected
branches. Now, as numerical data are available, the sec-
ondary flow structure can be visualized in the complete
model. Fig. 12 shows the iso-contours of the helicity for
peak inspiration and expiration for normal breathing. The
helicity is a measure for the strength of helical structures.
It is defined by

H = u(▽× u), (10)

whereat a scalar value is received. Color coded, the he-
licity represents the different senses of rotation, i.e. red -
positive, clockwise rotation, blue - negative, counterclock-
wise rotation and the shape of the helical vortices can be
seen.

During inspiration (Fig. 12 a), a vortex pair, can be
found in each generation of the model. The extension of
the vortex pair is maximal at the beginning of each gener-
ation and decreases slightly at the end. The helicity mag-
nitude is preserved again down to the 3rd generation and
decreases slightly further downstream, which can be seen
from the smaller iso-contour surfaces. Consequently, it is
assumed that the secondary vortices scale with the local
velocity which remains constant down to the 3rd genera-
tion.

During expiration, the PIV results presented by Adler
and Brücker [1], have shown a double vortex pair in the tra-
chea. This structure was not observed in the first branch.
Now, the complete structure of the vortex generation in
the whole model can be visualized (Fig. 12 b). It can be
seen that the double vortex pair starts to form upstream
at each bifurcation originating from a single vortex pair
which approaches from the two daughter branches. Fur-
ther upstream, the double vortex pair vanishes due to the
influence of the curvature of the branches. Hence, a new
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a) b)

Figure 11 Iso-contours of the y-velocity during transitionfrom expiration to inspiration (a) and from inspiration to e xpiration
(b), red and blue color indicates positive and negative velocity in the y-direction, respectively.

a) b)

Figure 12 Iso-contours of the helicity during peak inspiration (a) and expiration (b), red indiciates positive, clockwise rotation,
blue - negative, counterclockwise rotation.
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vortex pair is generated at the outside of the bend. As no
curvature exists, which is the case in the trachea, the vor-
tex only loses strength. The maximum secondary velocity
found here is about 20% of the average main flow velocity,
which is in agreement with Ref. [9].

a) b)

Figure 13 Velocity vectors and contour of the helicity in a
cross section of generation 1 for two different Reynolds

numbers, a) Re = 2000, b) Re = 3000.

To confirm the assumption that the vortices scale with
the local main velocity, i.e. Reynolds number, the veloc-
ity vectors in combination with the helicity contours are
illustrated in Fig. 13 for two different Reynolds num-
bers,Re = 2000 (Fig. 13 a) andRe = 3000 (Fig. 13
b). Each image shows the same cross section of the first
generation (upper cross section in Fig. 14). It can be
seen that forRe = 3000 the helicity is about three times
higher than forRe = 2000. The in-plane velocity has ap-
proximately doubled. This means that secondary vortex
strength strongly increases with higherRe and the relation
is not linear. These findings are in contrast to Fresconi and
Prasad [9] who stated that up to a critical Reynolds num-
ber ofRe = 100, secondary vortex strength increases lin-
early withRe and above this number, the vortex strength
remains nearly constant.

In order to gain more information about the vortex
structure, different planes of the first and second generation
are selected and the in-plane streamlines are plotted (Fig.
14). At the beginning of each branch the vortex pair is
symmetric and well pronounced, the strength is maximal.
Further downstream, it loses strength and the characteristic
symmetric vortex pair vanishes. The sectional streamlines
rather indicate a single swirl. At the bifurcation, two new
vortex pairs start to emerge.

These numerical results show that structure of the sec-
ondary vortices strongly varies along the branch. Hence,
the experimental measurements were apparently carried
out in a plane in which the vortex structure has vanished.
This finding is in contrast to Fresconi and Prasad [9] who
assumed a constant vortex structure throughout the com-
plete branch.

The validated numerical model allows not only the in-
vestigation of the lower generations of the lung, it allows
the comparison of variied boundary conditions. Figure 15
depicts a comparison between the Womersley numbers of
α = 5.5 andα = 9.5 at the time when the principal flow
direction at the inlet is zero and changes direction from ex-

Figure 14 Secondary flow structures in selected cross section
of the right main branch, color contours represent the

helicity, superposed are in-plane streamlines.

piration to inspiration. Due to the different frequencies the
maximum velocity magnitude for both cases is different.
But it is mentionable that the location of the maximum is
shifted from the center to the wall, especially in the mother
branch. In the daughter branches the flow pattern is asym-
metric forα = 9.5. This indicates a phase shift between
adjacent branches and leads to pendelluft. The curved ar-
row in figure 15b) indicates the location of this effect.

Figure 15 Velocity magnitude in a cut through the 5th
generation for two different Womersley numbers but the
same tidal volumes of TV = 75ml: a)α = 5.5 b) α = 9.5.

Black arrows indicate flow direction. c) Location of the cut
in the lung.

Conclusions
The numerical simulation is in good agreement with the

experimental results and the investigation of the grid in-
fluence shows that the used spatial resolution is sufficient.
Hence, flow phenomena which could not be measured can
now be visualized by using the according numerical data.
At the times of flow transitions from ex- to inspiration and
ins- to expiration, the flow is bidirectional due to the phase
shift of oscillatory flow; characteristic regions with differ-
ent flow directions develop. These regions reflect the dif-
ferent flow structure during ins- and expiration. Since dur-
ing expiration the maximum flow velocity occurs in the y-
z-plane in the center of the tube, the return of the flow has
to be initiated at the outside of the perpendicular x-y-plane.
During inspiration such a characteristic plane of maximum
velocity does not develop. Hence, the flow starts turning
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annularly close to the wall. Furthermore, it could be shown
that vortical structures occur in all generations during in-
spiration and expiration. Vortex pairs are generated during
inspiration in each branch by centrifugal forces. Due to
the change in curvature and bifurcating geometry, vortex
pairs are not conserved beyond a bifurcation but rather de-
velop anew. In contrast, the vortex pairs from the daugh-
ter branches unite in the parent branch to two vortex pairs
during expiration. However, halfway through the tube the
vortex pairs have vanished and start to develop again. Con-
sequently, the flow structure depends on the local curvature
and does not have a history from the upstream flow.
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