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Abstract
In valve-blood-wall interactions, the radius of the blood vessel wall may vary by up to ten percent. This structural
displacement is quite large, leading to difficulties at the artificial boundaries of the computational domain. In this
work, we investigate the dynamical behavior of the aortic heart valve and we introduce a technique that absorbs
structural energy and prevents the back flow of structure waves at the outflow. To this end, the computational domain
is prolonged by an artificial layer on which we solve a damped version of the hyperbolic structure equations. The
coupling of fluid and structure equations is realized by a monolithic solution algorithm, where the fluid equations are
rewritten in the ‘arbitrary Lagrangian Eulerian’ framework. The structure is divided into different parts to account
for the different physical properties of tissue of the heart, the valves, and the aorta. Specifically, we are dealing with
varying structure coefficients and different constitutive tensors. We present numerical examples that substantiate the
performance of our techniques.
Keywords: finite elements, fluid-structure interaction, Arbitrary Lagrangian Eulerian method, stability, damped wave
equation

Introduction
Cardiovascular diseases represent a major fraction of

mortalities in industrialized countries. For this reason,
there is an increasing demand from the medical commu-
nity for rigorous and quantitative investigations of the hu-
man cardiovascular system [1]. However, the complexity
of the circulatory system makes modeling and simulation
challenging because there are many fundamental factors
that must taken into account.

In this work, we focus on the main component of the
circulatory system: the heart. More specifically, we are
interested in the modeling and the simulation of the aor-
tic heart valve, which pumps oxygenated blood from the
left ventricle into the aorta. This arrangement implies that
there is an interaction between the blood, the heart walls
and the vessel walls. The mathematical approach of choice
to construct an appropriate model and simulation of these
dynamics is the fluid-structure interaction method. Beyond
this approach, fluid-structure interactions have significant
influences in bio-mechanics [1–4].

Various approaches to model heart valve dynamics ex-
ist. Usually, these approaches are considered as fluid-
structure interaction problems that can be solved by dif-
ferent solution algorithms [5–9]. Here, we use the ‘ar-
bitrary Lagrangian-Eulerian’ framework (ALE), which is
frequently used in the literature.

We solve the problem by a monolithic solution algo-
rithm (see [10–14]) because one must overcome the well-
known added-mass effect that occurs when the density of
a fluid and a structure are of the same order, such as in
hemodynamics [15]. In addition, a closed setting for the
equations is necessary for rigorous goal-oriented error es-
timation [16].

By construction, the ALE approach is not capable
of modeling topological changes, which occur when two
valves touch each other. This could be achieved, for in-
stance, with the immersed boundary method [7], the Fic-
titious Domain method [17], or with a fully Eulerian ap-
proach [13]. However, this point is of less importance in
our studies, because we focus on boundary conditions for
the structure of the outflow section. This issue should not
be neglected because the radius of the aorta may vary in a
range of 5 − 10 percent between diastole and systole (the
two phases in a cardiac cycle) [1]. This is a large displace-
ment of the blood vessel wall that effects both the flow field
and the blood vessel dynamics.

In recent years, much effort has been spent on model-
ing appropriate descriptions for fluid and pressure condi-
tions on the artificial outflow boundary [4, 18–21]; these
descriptions are related to the flow field. Consideration of
appropriate structural conditions becomes important when
dealing with the large deflections of the blood vessel walls.

SIMBIO 2011 1



Specifically, we are interested in the capability to absorb
outgoing waves (i.e., energy) to prevent the back flow of
waves.

To the best of our knowledge, this topic is novel, and
others have only just begun with investigations [22]. Here,
the authors consider the flow rate conditions of the fluid
problem and a complete set of (non-defective) boundary
conditions for the structure problem on the artificial out-
flow section.

Originally, energy absorption problems drew attention
in acoustic and electromagnetic wave propagation analysis
[23, 24]. The main difficulty is, that the standard Dirichlet
and Neumann boundary conditions are not able to absorb
energy from outgoing waves. As a result, various approxi-
mate boundary conditions have been used to absorb incom-
ing waves. One approach to eliminating reflections was
suggested by appending an artificial layer to the computa-
tional domain. This layer is intended to absorb the waves.
Specifically, one can use a perfectly matched layer (PML)
[25]. We employed this idea to extend the computational
domain that is used to absorb the outgoing waves in our
fluid-structure interaction problem. The major disadvan-
tage of this approach is the increased computational cost
due to solving both the complete fluid equations and the
structure equations on an artificial domain. To overcome
this drawback, we could solve reduced equations in the ar-
tificial layer or we would use an initial, coarser mesh in the
artificial part. We employed the latter strategy to deal with
the drawback, and we coarsened the initial mesh by hand
in that region.

The last issue that will be studied in this work, ac-
counts for the different physical properties of the structures
(namely the tissue) of the heart, the valves, and the aorta.
To this end, we use two strategies. First, we use the same
constitutive material model but with varying coefficients
to run the simulations. Second, we upgrade our solution
algorithm while using two different constitutive structure
tensors. This verification has important consequences for
future applications and more detailed modeling of arterial
tissue, for instance.

This contribution is organized as follows: In Section
The Fluid-Structure Problem, we describe the equations
for both the fluid and the structure, including a damped
hyperbolic equation. The proposed method is stable on the
continuous level. Afterwards, we formulate the problem in
a monolithic setting. Section Discretization is devoted to a
brief description of the discretization process. In addition,
we state a stabilization technique for the convective term
that is based on streamline diffusion. In the last section, we
exemplify our proposed method by presenting prototypical
numerical examples. The parameters for both the material
and the geometry are taken from the literature. The compu-
tations are performed with the numerical software library
deal.II [26].

The Fluid-Structure Problem
We denote by Ω ⊂ Rd, d = 2, 3, the domain of the

fluid-structure interaction problem. This domain is sup-
posed to be time independent but consists of two time de-
pendent sub-domains Ωf (t) and Ωs(t). The interface be-
tween both domain is denoted by Γi(t) = ∂Ωf (t)∩∂Ωs(t).
The initial (or later reference) domains are denoted by Ω̂f
and Ω̂s, respectively, with the interface Γ̂i. Further, we de-
note the outer boundary with ∂Ω̂ = Γ̂ = Γ̂D ∪ Γ̂N where
Γ̂D and Γ̂N denote Dirichlet and Neumann boundaries, re-
spectively.

We adopt standard notation for the usual Lebesgue and
Sobolev spaces [27]. We use the notation (·, ·)X for a
scalar product on a Hilbert space X and 〈·, ·〉∂X for the
scalar product on the boundary ∂X . Specifically, we define
H1

0 (X) = {v ∈ H1(X) : v = 0 on Γ̂D ⊂ ∂X}. We will
use the short notation V̂X := H1(X), V̂ 0

X := H1
0 (X)

and L̂X := L2(X), L̂0
X := L2(X)/R. For the time-

dependent problems, we define a time interval I := [0, T ]
with the end time value T <∞.

We expect that the reader is familiar with continuum
mechanics and we omit differentiation between scalar-
valued spaces (and variables) and their vector-valued ex-
tensions.

In the following, we study the interaction of an incom-
pressible Newtonian fluid and a structure of hyperbolic
type [19]. The equations for fluid and structure are de-
fined in their natural frameworks. The fluid problem reads
in Ωf (t):

ρf ∂tvf |Â + ρf (vf − w) · ∇vf − divσf = 0
divvf = 0

vf = vD on Γf,in(t), σnf = gf,N on Γf,N (t),
(1)

with the Cauchy stress tensor σf . The (undamped) struc-
ture problem is defined by:

ρ̂s∂
2
t ûs − d̂iv(F̂ Σ̂s) = 0 in Ω̂s,

ûf = 0 on Γ̂s,D, F̂ Σ̂sn̂s = 0 on Γ̂s,N , (2)

with the second Piola-Kirchhoff tensor Σ̂s and the defor-
mation gradient F̂ = I + ∇̂û, where I denotes the iden-
tity tensor. The coupling conditions are given by (with
det(F̂ ) = Ĵ):

v̂f = ŵ on Γ̂i, (3)

Ĵ σ̂f F̂
−T n̂f + F̂ Σ̂sn̂s, = 0 on Γ̂i, (4)

where ŵ denotes the fluid domain velocity that can be con-
structed by ŵ = ∂tûs on Γ̂i. The stress tensors, σ̂f and
Σ̂s, will be specified below. The viscosity and the density
of the fluid are denoted by νf and ρf , respectively. The
elastic structure is characterized by the Lamé coefficients
µs, λs.

The physical unknowns are the (vector-valued) fluid
velocity v̂f : Ω̂f × R+ → R3, the (scalar) fluid pres-
sure p̂ : Ω̂f × R+ → R, and the (vector-valued) structure
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displacement ûs : Ω̂s × R+ → R3. The ALE mapping is
denoted by Â : Ω̂→ Ω(t) and is constructed from the dis-
placements of the moving interface, i.e., ûf = Ext(ûs|bΓi

).
This condition is used to solve an additional partial dif-
ferential equation that is explained below. Furthermore,
any function q̂ ∈ Ω̂ is defined on Ω by q(x) = q̂(x̂) with
x = Â(x̂, t).

Coupling conditions for multiple structures
To extend the standard fluid-structure interaction prob-

lem for the in-cooperation of multiple structures, we first
recall the coupling conditions:

ûs,1 = ûs,2 on Γ̂i,

F̂ Σ̂s,1 = F̂ Σ̂s,2 on Γ̂i.
(5)

In a variational framework, the second coupling condi-
tion in Equation (5) becomes an implicit condition. The
Dirichlet-like condition of Equation (5) is strongly im-
posed in the corresponding Sobolev space.

The multi-structure models become important when
considering a prototypical heart valve simulation. Here,
we describe all structure parts (the section of the heart, the
valves, and the aorta) by the same material model but with
varying coefficients. These are unsteady on the interface
where the different structures touch each other. We do not
expect difficulties by using different constitutive models
for the different structure parts. Its verification is impor-
tant because one is interested in modeling blood vessels
with more sophisticated material models [31, 32]. But, in
contrast to the coupling of fluids and structures together,
where the Cauchy stress tensor changes entirely, this kind
of coupling is of a lower level, because the stress tensors
have similar meaning and should not cause any difficul-
ties. We address this subject in a numerical example below,
where this assumption will be established.

However, the introduced structure models in this work,
are not sufficient to obtain quantitative correctness of the
wall stresses [19, 30, 31]. This limitation is because resid-
ual stresses (that are present in complex structures in bio-
logical tissues with composite reinforced fibers) can not
be represented by these models. To represent residual
stresses, more elaborated models are required [30–33].
Nevertheless, the STVK model permits us to study the nu-
merical correctness of the proposed formulation and to val-
idate the model.

Construction of the ALE mapping
The fluid mesh motion is constructed by posing an ad-

ditional equation, which is driven by the motion of the in-
terface Γi(t), i.e., Â = ûs on Γ̂i, leading to ŵ = v̂s on
Γ̂i. Further, we fix the inlet and the outlet boundary parts
by ûf = 0 on Γ̂f,in(at left) ∪ Γ̂f,out(at right) (see Figure
1). In the fluid domain Ω̂f , the transformation Â is arbi-
trary but should satisfy certain regularity conditions (C1-
diffeomorphism) [19]. Specifically, the fluid mesh is con-
structed by solving a biharmonic equation (for large mesh

H D

Stiff structure

d A(t)

Lheart
Laorta

Lext

Structure with damping

Aortic Sinus

Soft structure

Figure 1 Configuration for the numerical examples.

deformations without re-meshing):

∆2ûf = 0 in Ω̂f ,

ûf = 0 on Γ̂f,in ∪ Γ̂f,out,

∂nûf = 0 on Γ̂f,in ∪ Γ̂f,out,

ûf = ûs on Γ̂i.

The ALE map is constructed by solving a mixed formu-
lation of the biharmonic equation in the sense of Ciarlet
[28]. We introduce an auxiliary variable η̂ = −∆̂û and
obtain two differential equations:

η̂ = −∆̂û in Ω̂f ,

−∆̂η̂ = 0 in Ω̂f . (6)

By employing the two equations (6) to construct the ALE
mapping, the first equation is defined on all Ω̂, whereas the
second equation is only defined in the fluid domain Ω̂f .
For more details and a comparison study of different mesh
motion techniques, we refer to [14].

Absorbing conditions for the structure
Over the last decade, much effort has been spent on de-

scriptions of appropriate conditions in (artificial) inlet and
outlet boundaries (of blood vessels) for fluid and pressure
(see [1, 4, 21, 22], and the many references cited therein).
Specifically, the fluid-wall interaction is responsible for the
propagation of pulse pressure waves in the blood vessel.
This is a characteristic issue that only appears in compliant
vessels and not in domains with fixed walls.

In our study, we focus on boundary conditions for the
blood vessel in the outflow. Often, the vessel structure is
fixed in the horizontal direction and left free in the vertical
direction [21]. Recently, a first step in addressing struc-
tural conditions has been taken in [22]. Here, the authors
compare three different strategies by extending methods
from the rigid case. However, they apply these strategies
to blood vessel computations with moderate deformations
but not to heart valve dynamics.

We turn now to interaction processes occurring in heart
valve dynamics. A prototypical configuration is sketched
in Figure 1. Usually, one would solve the equations by
using Ω̂ and imposing Dirichlet or Neumann conditions on
Γ̂i,s. For both types of conditions, waves are reflected at
the outflow boundary, which is illustrated in Figure 2 for
a clamped structure (homogenous Dirichlet conditions) on
Γ̂s,out.
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In our approach, we extend the computational domain
by using a well-known technique from acoustics, which is
comparable to the perfectly matched layer approach [25].

Figure 2 Sequence of states of a reflected wave at the
structure outflow boundary at different time steps: incoming

waves are displayed in the left and middle figure. The
reflected wave is shown in the figure at the bottom.

In the artificial part Ω̂ext = Ω̂extf ∪Ω̂exts of the computa-
tional domain, we prescribe a damped version of the struc-
ture equations in Ω̂exts , to absorb outgoing waves and to
prevent structure reflections. One drawback of this method
is the higher computational cost that results because we
solve both the full fluid equations and the structure equa-
tions in the artificial layer. However, we coarsen the grid
manually in the artificial domain because we are not in-
terested in observing any physical quantity in that domain.
Ideally, one would solve reduced models on the artificial
domain or coarsen the mesh automatically during the so-
lution process. Here, one could use goal-oriented mesh
adaption with the dual weighted residual method (DWR)
[16]. A simplified version of the DWR method for a sta-
tionary setting for our configuration was tested in [29].

The modified structure problem for the extended do-
main is defined by:

ρ̂s∂
2
t ûs − d̂iv(F̂ Σ̂s(ûs)) + γw∂tûs = 0 in Ω̂exts ,

with γw ≥ 0. Here, the damping term is referred to as
weak damping.

In the following, we pose a standard mixed formulation
for the structure equations,

ρ̂s∂tv̂s − d̂iv(F̂ Σ̂s(ûs)) + γwv̂s = 0 in Ω̂exts ,

ρ̂s∂tûs − v̂s = 0 in Ω̂exts . (7)

The modified structure Equation (7) reduces to the original
Equation (2) by setting the damping parameter to γw =
0. Therefore, we are dealing in the following only with
Equation (7) in Ω̂s, and we omit differentiation between
Ω̂s and Ω̂exts .

For structural damping, one could also use a damping
form that is related to the entire structural operator. This
kind of damping is a so-called strong damping and leads to
a modification of the interface conditions between the fluid
and the structure. This issue is examined in [39].

The variational form in the reference domain
So far, the description is not related to a specific so-

lution algorithm. In this section, we specify our solution
framework and formulate the equations in a monolithic set-
ting. The coupling of the equations of Problem 1 with 7
via the conditions in Equation (4) is derived in the same
manner as [14]. To this end, all equations are defined (and
solved) in the reference configuration Ω̂ = Ω̂f ∪ Ω̂s. A
continuous variable û in Ω̂, defining the deformation in Ω̂s,
and supporting the transformation in Ω̂f , is defined. Then,
we get the standard relations

Â := id+ û, F̂ := I + ∇̂û, Ĵ := det(F̂ ). (8)

Furthermore, the velocity v̂ and the additional displace-
ment variable η̂ are common continuous functions for both
subproblems. The pressure p̂ should be discontinuous over
the interface Γ̂i because there is no physical relation be-
tween p̂f and p̂s. The problem reads:

Find {v̂, û, η̂, p̂} ∈ {v̂D+ V̂ 0}×{ûD+ V̂ 0}× V̂ × L̂0,
such that v̂(0) = v̂0 and û(0) = û0, for almost all time
steps t ∈ I , and

(Ĵ ρ̂f∂tv̂, ψ̂v)Ω̂f

+(ρ̂f Ĵ(F̂−1(v̂ − ŵf ) · ∇̂)v̂), ψ̂v)bΩf

+(Ĵ σ̂f F̂−T , ∇̂ψ̂v)bΩf
+ (ρ̂s∂tv̂, ψ̂v)bΩs

+(F̂ Σ̂s, ∇̂ψ̂v)bΩs
+ γw(∂tûs, ψ̂v)bΩs

= 0 ∀ψ̂v ∈ V̂ 0,

(∂tû− v̂, ψ̂u)bΩs
+ (α̂u∇̂η̂, ∇̂ψ̂u)bΩf

= 0 ∀ψ̂u ∈ V̂ 0,

(α̂uη̂, ψ̂η)bΩ + (α̂u∇̂û, ∇̂ψ̂η)bΩ = 0 ∀ψ̂η ∈ V̂ ,

(d̂iv(Ĵ F̂−1v̂), ψ̂p)bΩf
+ (p̂, ψ̂p)bΩs

= 0 ∀ψ̂p ∈ L̂0,

with ρ̂f , ρ̂s, νf , µs, λs, F̂ , Ĵ , and a positive (small) dif-
fusion parameter α̂u. The stress tensors, σ̂f and Σ̂s, are
defined as

σ̂f := −p̂fI + ρ̂fνf (∇̂v̂f F̂−1 + F̂−T ∇̂v̂Tf ),

Σ̂STVK
s := (λs(trÊ)I + 2µsÊ),

σ̂INH
s := −p̂I + µ1F̂ F̂

T ,

where F̂ Σ̂s = Ĵ σ̂sF̂
−T gives the link between the differ-

ent stress tensor notations.
The viscosity and the density of the fluid are denoted

by νf and ρ̂f , respectively. The function ĝ represents the
Neumann boundary conditions for both physical bound-
aries (e.g., zero stress at the outflow boundary), and normal
stresses on Γ̂i. Later, this boundary represents the interface
between the fluid and the structure. The structure is charac-
terized by the density ρ̂s and the Lamé coefficients µs, λs.
For the STVK material, the compressibility is related to the
Poisson ratio νs (νs < 1

2 ).
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This problem is completed by an appropriate choice of
the two coupling conditions on the interface. The continu-
ity of velocity across Γ̂i is strongly enforced by requiring
one common continuous velocity field on the whole do-
main Ω̂. The continuity of normal stresses is given by

(Ĵ F̂ Σ̂sF̂−T n̂s, ψ̂v)bΓi
= (Ĵ σ̂f F̂−T n̂f , ψ̂v)bΓi

. (9)

By omitting this boundary integral jump over Γ̂i, the weak
continuity of the normal stresses becomes an implicit con-
dition of the fluid-structure interaction problem.

To ease the notation, the structure stress tensors are
considered in the above problem as follows:

Σ̂ :=
n∑
i

Σ̂i, n = 1, 2, 3,

where Σ̂i denotes the sub-structure tensor of each struc-
tural problem.

Discretization
To discretize the non-linear problem, we introduce a

semi-linear form and we write the (non-linear) equation
system in compact notation: Find Û = {v̂, û, η̂, p̂} ∈ X̂0,
where X̂0 := {v̂D + V̂ 0} × {ûD + V̂ 0} × V̂ × L̂, such
that ∫ T

0

Â(Û)(Ψ̂) dt =
∫ T

0

F̂ (Ψ̂) dt ∀Ψ̂ ∈ X̂, (10)

where X̂ = V̂ 0× V̂ 0× L̂0. The time integral is defined in
an abstract sense such that the equation holds for almost all
time steps. The linear form is given by F̂ (Ψ̂) ≡ 0 because
we neglect volume forces. The semi-linear form Â(Û)(Ψ̂)
is defined by

Â(Û)(Ψ̂) = (Ĵ ρ̂f∂tv̂, ψ̂v)bΩf

+ (ρ̂f Ĵ(F̂−1(v̂ − ŵ) · ∇̂)v̂), ψ̂v)bΩf

+ (Ĵ σ̂f F̂−T , ∇̂ψ̂v)bΩf
+ (ρ̂s∂tv̂, ψ̂v)bΩs

+ (Ĵ σ̂sF̂−T , ∇̂ψ̂v)bΩs
+ γw(v̂, ψ̂v)bΩs

− 〈ĝ, ψ̂v〉bΓN
+ (α̂uη̂, ψ̂η)bΩ

+ (α̂u∇̂û, ∇̂ψ̂η)bΩ + (∂tû, ψ̂u)bΩs

− (v̂, ψ̂u)bΩs
+ (α̂u∇̂η̂, ∇̂ψ̂u)bΩf

+ (d̂iv (Ĵ F̂−1v̂), ψ̂p)bΩf
+ (p̂, ψ̂p)bΩs

.

(11)

Temporal discretization is based on finite differences and
the one step-θ schemes [34]. We use the shifted Crank-
Nicolson scheme based on finite differences that was de-
veloped for this ALE scheme in [14]. Spatial discretization
in the reference configuration Ω̂ is treated by a conforming
Galerkin finite element scheme, leading to a finite dimen-
sional subspace X̂h ⊂ X̂ . The discrete spaces are based on
the Qc2/P

dc
1 element for the fluid problem [35]. The struc-

ture problem is discretized by the Qc2 element. The non-
linear problem is solved by the Newton method where the

Jacobian is derived by exact linearization of the directional
derivatives [14]. Here, the linear equations are solved with
a direct solver (UMFPACK).

Residual based stabilization for the convective term
Modeling blood flow at the exit of the aortic valve leads

to a convection-dominated problem with a Reynolds num-
ber of ∼ 4500 [30]. For this reason, we must stabilize our
formulation. The first ideas on this subject go back to [36].
Our method of choice is the streamline upwind Petrov-
Galerkin (SUPG) method. A simplified (non-consistent)
version in Ω̂f reads:

sSUPG(Ûkh)(Ψ̂)

:=

MX
m=1

8><>:
Z

Im

X
cK∈Tm

h

(ρ̂f (Ĵ bF−1
v̂f · b∇)v̂f , δK,m(v̂kh · b∇ bF−1

)ψ̂
v
)cK

9>=>; .

with

δK,m = δ0
h2
K

6νf + hK ||vkh||K
, δ0 = 0.1.

For more details on the choice of these parameters, we re-
fer to [37].

Numerical Tests
To test our proposed method, we set up a prototypical

problem. The data for the material parameters and the ge-
ometry are taken from the literature [1, 30], and have been
discussed with a medical doctor. One cardiac cycle has a
time length of T = [0s, 0.9s]. Four time cycles are used
to run the computation. The time step size k is chosen in
the range of 0.02s − 0.001s to identify convergence with
respect to time. The results are split into three sections.
In the first set of computations, we validate the model in
a straight channel. Afterwards, we present results for a
curved tube, which has a closer geometrical relationship
to the ‘real’ aorta. In the last part, we discuss our results
obtained by using different constitutive structure tensors.

Configuration
The (reference) configuration Ω̂ of the numerical test

case is illustrated in Figure 1. Specifically, we set Lheart +
Laorta = 6.0cm, Lext = 12cm, H = 2.9cm, D = 2.5cm,
and d = 0.5cm. The distance between the two valves was
chosen to be sufficiently large to avoid topological difficul-
ties.

Inflow and boundary conditions
A time-dependent parabolic velocity inflow profile is

prescribed on Γ̂in (left boundary H), and is sketched in
Figure 3. This inflow profile is scaled by a constant fac-
tor 0.1. The ‘do-nothing’ condition is used on Γ̂out (right
boundary D).

The structure is clamped on Γ̂in and Γ̂out. On the other
parts, the structure is left free to allow the walls to move.
Specifically, the structure on the outflow boundary of the
extended domain is fixed by homogenous Dirichlet con-
ditions. Here, we assume that all reflections have already
been absorbed by the damped structure equations.
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Figure 3 Interpolated flow rate profile in one cardiac cycle,
which is imposed at the inflow boundary.

Quantities of comparison and their evaluation
We evaluate the deflections in both the x- and y-

directions at the tails of one valve, at the point A(0) =
(3.64, 0.35). Moreover, we measure the wall stresses be-
tween the fluid and the structure in the upper part of the
wall (over the length Laorta at the interface between the
fluid and the structure). The upper wall measurement is
important in medical engineering applications where high
stresses behind the aortic heart valve can lead to an aor-
tic dissection. We measured the minimal (min), maximal
(max), and amplitude (ampl) values.

Parameters
For the fluid, we use the density ρf = 1gcm−3, and

the viscosity νf = 0.03cm2s−1. The elastic structure
is characterized by the density ρs = 1gcm−3, the Pois-
son ratio νs = 0.3, and the Lamé coefficients µheart =
108gcm−1s−2, µvalve = 5.0 ∗ 105gcm−1s−2, µaorta =
106gcm−1s−2. The (weak) damping parameter is given
by γw = 104.

Results for valve dynamics in a straight channel
The results indicate that our proposed model is suitable

to run valve dynamics for a prototypical configuration. We
show at least two time levels and three mesh levels to iden-
tify convergence with respect to time and space, respec-
tively. The results of the physical quantities are summa-
rized in [38, 39]. The qualitative behavior of the quantities
of interest for the last three cycles can be observed in Fig-
ure 4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  1.5  2  2.5  3  3.5

y
 d

is
p

la
c
e

m
e

n
t 
[c

m
]

Time [s]

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 1  1.5  2  2.5  3  3.5

W
a

ll 
s
tr

e
s
s
 [
g

/c
m

 s
^2

]

Time [s]

Figure 4 Evaluation of the x and y displacements (top) and
wall stresses in the x and y-directions (bottom) for the valve

dynamics in a straight channel.

We show the qualitative behavior of the results in the

Figure 5. If the damping parameter is too low, structure
waves propagate through the whole structure domain. On
the other hand, if the damping parameter chosen is too
high, the structure becomes too stiff and outgoing waves
are reflected.

Figure 5 Valve simulations in a straight channel with too low
damping γw = 103 (top), with too strong damping γw = 106

(middle), and with proper damping γw = 104 (bottom).

Figure 6 From the left to the right and from the top to the
bottom: time sequence of solutions of the x-velocity to the
non-stationary valve simulations within one cardiac cycle.
The highest velocity is indicated in red. Fluid back flow is
indicated in light blue, caused by compliance of the vessel

walls and the incompressibility of the fluid.

Results for valve dynamics in a curved channel
This example is a slight modification of the previous

example; here, the geometry has a closer relation to a ‘real’
blood vessel (see Figure 7). The qualitative behavior of
the quantities of interest is comparable to the results of the
straight channel, which is illustrated in Figure 8.
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Figure 7 Valve simulations in a curved domain with proper
damping γw = 104.
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Figure 8 Evaluation of the x and y displacements (top) and
the wall stresses in the x and y directions (bottom) for the

curved configuration.

Results for valve dynamics with multiple structures

Up to now, the structure was described by the same
structure model, namely the STVK material, but with vary-
ing coefficients. In this numerical example, we test our
solution algorithm with different structure models, where
the stress tensor changes entirely. Here, the heart section
Lheart and the leaflets are modeled by the INH material.
The aorta Laorta and the artificial structure Laorta are still
described by the STVK material.

The purpose of this example is twofold:

• Do we observe any difficulties of our monolithic so-
lution algorithm? This is question is important with
regard to the following task (see future ideas). The
structure of blood vessel walls is a highly complex
composition of different materials with constitutive
stress tensors and different properties. Thus, we make
a first step in this work, to compute a fluid-multi-
structure system.

• Second, do we detect different behavior for the quan-
tities of interest?
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Figure 9 Evaluation of the y displacement (left) and the wall
stress in the y-direction (right) for the valve dynamics with

multiple structures in a straight channel.

To respond to the first question, we observed that the
convergence of Newton’s method at each time step was
slightly better, while in-cooperating the multi-structure
model. This result indicate that the solution algorithm per-
forms better when modeling the valves and the heart sec-
tion by the INH material. This is in agreement with our ob-
servations of the comparison in [39]. There, we observed
a failure (and bad convergence of the Newton method) of
the STVK material for large deflections. In the present test
case, we observe again bad convergence of the STVK ma-
terial for large deflections.

Second, we observe the same qualitative (nearly the
identical) behavior for all quantities of interest (see Fig-
ure 9). This was expected for the wall stresses because we
still used the STVK material in Laorta.

Conclusions
In this work, we proposed a monolithic fluid-structure

framework to simulate two-dimensional long axis valve
dynamics on prototypical configurations. Here, we were
concerned with large structural deformations of the blood
vessel. To overcome difficulties with reflected structure
waves at the outflow boundary, we solved damped hyper-
bolic equations on a prolongated domain. In further stud-
ies, we plan to investigate the influence of strong and weak
damping parameters. Second, we plan to couple the model
with absorbing boundary conditions for the fluid part that
accounts for wave propagations. Third, we will incooper-
ate sophisticated structure equations to modeling arterial
tissue.
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