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Abstract

The current work concerns the study and the implementation of a modern algorithm for error estimation in Com-
putational Fluid Dynamics (CFD) computations. This estimate involves the use of the adjoint argument. By
solving the adjoint problem, it is possible to gain important information about the transport of the error related to
the quantity of interest. The aim is to apply for the first time this procedure to the Petrov-Galerkin (PG) method.
Some numerical schemes such as Streamline Upwind Petrov-Galerkin (SUPG), stabilized Residual Distribution
(RD) and bubble method have been selected for implementation and tested. Scalar linear hyperbolic problems are

used as basic demostration.
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1. Introduction

Over the last decade, much progress has been made
in the area of error estimation. This theory provides
a way to construct error indicators for CFD computa-
tions of PDE’s. These indicators can be used to drive
automatic mesh adaptation algorithms, by optimizing
the mesh spacings or reducing the memory usage.

In this field, the a posteriori error analysis is one of
the most used procedures to compute numerical er-
ror indicators. The relevance and generality of this
estimation has been powerfully argued in the work
of Johnson and his collaborators [1]. The a posteri-
ori error bounds resulting from this analysis involve
the numerical residual, obtained by inserting the com-
puted solution into the current problem equations; this
residual measures the extent to which the numerical
approximation to the continuous solution fails to sat-
isfy the current problem. From this study, the Type II
a posteriori error bounds have been defined.

Becker and Rannacher worked also on this issue,
developing the so-called weighted-residual-based, or
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Type I, a posteriori error estimation ([2] and [3]).
Here, the error representation formula defines the er-
ror in the target functional for the numerical residual,
weighted by the solution of an adjoint problem. The
key ingredient is this auxiliary problem, involving the
formal adjoint of the current partial differential opera-
tor. For computing this product, also the adjoint prob-
lem will be implemented and solved numerically. To
solve this problem, added cost rises. However, it is
paid back by important information which helps to
identify the real source of the error. For example,
Hartmann ([4]) shows the relevance and the advan-
tages of Type I indicators over the Type II for the adap-
tive mesh design for a supersonic flow past an airfoil.
The data for the adjoint problem is a quantity of in-
terest depending on the application. In engineering
applications, this is typically a functional of the ana-
Iytical solution such as a mean, point value or bound-
ary flux. In fluid dynamics, it may be the pressure
at the stagnation point, the pressure-drop between in-
flow and outflow or the drag or lift coefficients of a
body immersed into the fluid.



2. Definition in continuous setting

2.1. Primal and adjoint problem

Primal problem model. Let Q be a bounded open do-
main R? with boundary I'. Given the primal problem
in strong form

Lu=f in Q Bu=g on T' (1)
where f € L?>(Q) and g € L*(T'), L denotes a linear
differential operator on Q2 and B a linear boundary op-
erator on I'.

The functional J(-). In many problems of physical in-
terest the quantity of interest for the current problem
is an output or target functional of the solution rather
the solution itself. This target functional is defined as
J(-). Depending on the problem, it can be a different
quantity, for example the drag or the lift coefficient or
a point value of the solution.
According to the theory, the linear functional is de-
fined by

J(u) = (u, jo)o + (Cu, jr)r 2

where jq € L*(Q) and Jr € [*(T) and C is a differen-
tial boundary operator onI" and (-, -)q and (-, -)r denote
the L?(Q) and L?(T) inner products respectively.

Associated adjoint problem. Following the theory of
adjoint operators [5] we can write the (continuous)
compatibility equation, for Yv € H!

(Lu,v)q + (Bu, C*V)r = (u, L'v)a + (Cu, B'v)r (3)

where, L, B and C are the operators of the primal
problem and L*, B* and C* the corresponding adjoint
counterparts. By these so-called adjoint operators, we
build the adjoint problem associated to (1)

L'z=jo in Q, B'z=jr on I. (4)
Terms jo and jr on the right-hand side depend on
the target quantity that we want to investigate. From
the (3), we note that for given operators L and B as-
sociated with the primal problem (1) only some tar-
get functionals (2) with operator C are compatible
whereas others are not. Moreover, in an adjoint-based
optimization framework, [6], there ensures that

J(u) = (u, jo)a + (Cu, jor = (u, L*v)q + (Cu, B*v)r
= (Lu,v)q + (Bu,C*'v)r = (f,2)a + (§,C*r

The associated adjoint problem describes how the in-
formation is transported towards the current quantity
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of interest. This is extremely useful to derive where
and how the source of the error of the target quantity
is carried over the domain. The error indicator derived
by this information will allow to trace sources of the
error of the quantity of interest.

3. Numerical discretization

Let Q be subdivided into a shape-regular mesh
K = {«} consisting of elements . Let V}, be the
standard finite element space of piecewise polynomi-
als of complete degree p with C° continuity between
elements

Vip = (v 2 v € COUQ), il € Pp(0), Yk € K} (5)

with P(x) the space of polynomials of degree < p de-
fined on an element «. Let then define a second space
(VZ# which is the mesh dependent broken space of
piecewise polynomials of complete degree ¢ in each
« with no continuity between elements

(V,l;’q = {vp : vple € Py(K), Yk € K} (6)

We discretize both primal and adjoint problem and
solve them numerically by using a Petrov-Galerkin
(PG) method, where trial and test functions belong to
YV, and ‘szq, respectively, depending on the current
problem.

According to (5) and (6), the boundary conditions are
not imposed by the functional spaces, hence they have
ti be added explcitly to the weak formulation of the
problem.

Then following (3), the (discrete) compatibility con-
dition holds as follows, for Yv,, € ’VZ’ »

(Lup, vp)a + (Bup, C*vp)r =
(i, L'vp)o+(Cuty, Bvp)r + ) (H(wy, 1), v} Jaar
k

(7
The additional terms in the RHS represents the effect
of the broken test space when applying partial inte-
gration to the LHS, leading to jump terms over the
element boundaries. Thus, for a conservation law,
H(wy, n) is the numerical flux over 0k, which is un-
conditionally continuous because the w;, € Vj,p, nis
the outward normal along the element boundary and
v; the outward traces of v, over dk.
So we can define a bilinear operator B(-, -) as

B(up, vp) = (Lup, vp)a + (Bup, C*vp)r (8)



Then, defining F(:) a linear form including the pre-
scribed primal force and boundary data functions, f
and g, the (discrete) primal problem is defined as

PRIMAL PROBLEM Find u;, € V},, such that

Bun,vp) = F(vy) ~ YveVy (9

while the corresponding adjoint problem is given by

ADJOINT PROBLEM Find z; € (VZ g such that

Bwn, zp) = J(wp) Ywi, € Vi (10)

As we see, both problems use the same operator
B(:,-), as in Discontinuous Galerkin (DG) methods.
However due to the Galerkin properties, in the DG
discretization test and trial space are identical, instead
here, in the primal problem the solution u, € V;,
and the test function v, belongs to (VZ,,; while for the

adjoint problem, the solution z, € (qu and the test
function wy, is taken from V4.

3.1. Broken space (szq

A plethora of possible Broken spaces (VZ, are avail-
able. Herebelow we list the three Petrov-Galerkin
spaces that will be taken into account for the computa-
tions considered in section (5). Therefore, let remind
that for a PG method, the broken spaces (szq can be
always defined by a sum of two contributions

‘VZ’q = span{‘I’O +¥h

where W is the “main” shape function of the space
and W! is a element stabilizer term.

Streamline Upwind Petrov-Galerkin method. In case
of a Streamline Upwind Petrov-Galerkin (SUPG)
method, the broken space (Vz, is the same as V),
except for the addition of a stabilizer term

(Vb

g = span{e! + 7,.b - Vo) (11)

where 7, is usually the size of the element « and
go? € V)4 the Lagrange interpolant polynomial of the
degree of freedom, i, and order g; while, finally, b is
the local advection speed of the current problem. So
for this functional space ‘P? = ¢} and ¥ =7b- V.
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Residual-Distribution Method. If the stabilised
Residual Distribution (RD) space is chosen, the
broken space, ﬂ/b’q, is defined as

Vy, =spaniB; + 7.b - Vo!} for g>1  (12)

where Bi(x) = Bf({ki}icc» un, b, h, Luy|c) and k; = Le;;
while 7, is usually the size of the element « and ¢}
the Lagrange interpolant polynomial of the degree
of freedom, i, and order ¢q. So ‘I’? = X'Bj and

‘*I’} =7b- V(,o(]’,.

”Bubble” method. The “bubble” method comes out
from the equivalence of the RD and SUPG method.
Indeed, it takes the following broken space (VZ g

‘”Vz,q = span{e] + S“af} (13)

with goj.’ the Lagrange interpolant polynomial of the
degree of freedom, i, and order ¢, while S* is a bubble
function vanishing along dk. In this case, it is either
a linear bubble, unary in the baricentric point x,,
or a cubic one, coming out from the product of the
three vertex linear functions. Finally af is given by
af = B; — ¢i, where B; is the corresponding RD basis
function. Then here ‘I—’? = (p? and ‘I’j = S*af.

3.2. Numerical analysis
Consistency and adjoint consistency. All Petrov-
Galerkin methods satisfy the Galerkin orthogonality

B(u — up,vp) =0 (14)

for Vv € (VZ » which means that the discretization er-
ror e = u — uy, is orthogonal (with respect to the bi-
linear form B) to the discrete test space (Vz » Hence,

because v € (Vz’p c V, we find for Yv € V
B(u,v) = F(v) (15)

This proves that a PG method is a consistent dis-
cretization of the primal problem (1). Furthermore,
a numerical discretization is called also adjoint con-
sistent [5], if the exact solution z € V to the adjoint
problem (4) satisfies, for Yw € V

Bw,z) = J(w) (16)

In other words, the discrete adjoint problem is a
consistent discretization of the continuous adjoint
problem. Motivated by the identity (7) and replacing
75 by the exact solution z and because wy;, € V), C V,
we can state that the bilinear form B is also adjoint
consistent.



Figure 1: Barth’s problem : (a) primal; (b) adjoint

Method h llee — ol 2 llz = zall2 () — J(up)l

SUPG 0312 3.8562e-03 5.3264e-03 5.8600e-05

SUPG .0156 89181e-04 (2.11) 1.8667e-03 (1.51) 8.9990e-06 (2.70)

SUPG .0078  1.5552e-04 (2.52) 3.6204e-04 (2.37) 1.1747e-06 (2.94)

SUPG .0039  2.5720e-05 (2.60) 6.2955e-05 (2.52) 1.4700e-07 (3.00)
RD-LDA .0312 3.9011e-03 1.0118e-02 2.2153e-04
RD-LDA  .0156  1.1269e-03  (1.79) 3.3506e-03  (1.59) 5.7671e-05 (1.94)
RD-LDA  .0078  2.9220e-04 (1.95) 9.7188e-04 (1.79) 1.5135e-05 (1.93)
RD-LDA  .0039 7.4076e-05 (1.98) 2.8564e-04 (1.77) 3.8672e-06 (1.97)
BUBBLE .0312 2.6321e-03 5.0281e-03 9.6111e-05
BUBBLE .0156 6.0996e-04 (2.11) 1.5697e-03 (1.68) 2.5721e-05 (1.90)
BUBBLE .0078 1.4730e-04 (2.05) 3.9956e-04 (1.97) 6.7168e-06 (1.94)
BUBBLE .0039 3.5841e-05 (2.04) 1.1083e-04 (1.85) 1.7109e-06 (1.97)

Table 1: Convergence rates p = 1 order of SUPG, RD and BUBBLE methods
for cicular advection problem [7].

Method h llu — uy]| 2 llz = zall,2 () = J(uyp)l

SUPG .0312  2.6300e-04 7.2814e-04 5.6795e-07

SUPG .0156  3.2645e-05 (3.01) 9.9617e-05 (2.87) 2.2024e-08  (4.69)

SUPG .0078  2.8945e-06 (3.50) 1.0450e-05 (3.25) 7.4814e-10 (4.88)

SUPG .0039  3.1390e-07 (3.20) 1.0542e-06 (3.31) 2.3627e-11  (4.98)
RD-LDA  .0312 3.7591e-04 5.8481e-03 2.1472e-06
RD-LDA  .0156 8.1254e-05 (2.21) 3.1556e-03  (0.89) 2.7553e-07 (2.96)
RD-LDA  .0078 1.5478e-05 (2.39) 1.7036e-03 (0.89) 3.7701e-08 (2.87)
RD-LDA  .0039 2.5365e-06 (2.61) 9.1564e-04 (0.90) 4.7701e-09 (2.98)
BUBBLE .0312 1.7989e-04 6.7172e-03 4.2105e-06
BUBBLE .0156 3.7848e-05 (2.25) 4.3264e-03 (0.63) 6.5782e-07 (2.68)
BUBBLE .0078 8.3242e-06 (2.18) 2.5741e-03  (0.75) 8.9382e-08 (2.88)
BUBBLE .0039 1.6420e-06 (2.34) 1.4398e-03 (0.84) 1.1594e-08 (2.95)

Table 2: Convergence rates p = 2 order of SUPG, RD and BUBBLE methods
for cicular advection problem [7].
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Convergence (order of convergence). Let u €
HP*Y(Q) and u;, € V), be the solutions to (15) and
(1), respectively. Then,

1
llu = unll2) < CHP* ul o g (17)

Let p > 0 and (V,b”7 be the broken finite element
space defined in (6). Then, by PZ » We denote the L*-
projection onto V? » i.e. given a u € L*(Q) we define
Pz’pu € (VZ’p by

L (u— Pz’pu)v;, dx=0 Vv, € ”V,bl’p

we use the short notation Pju instead of PZ u when it
is clear which projection is meant. Now, let p > 0 and
Pyv be the L?-projection. Suppose v € H?*1(Q), then

v = Puvllgrq) < ChlVIlzz g (18)

To numerically verify the convergence rate for smooth
primal and adjoint data, numerical solutions of the fol-
lowing 2-D circular advection problem [7] were ob-
tained

b-Vu=0 inQ

19
u=g onl_ (19)

The target quantity is the weighted outflow flux func-
tional

1
J(u) = f 04(b - Youfowlt dX
0

Figures la and 1b show primal and adjoint current
solutions, respectively, while tables 1 and 2 tabulate
values of the global solution error using a sequence
of four nested meshes. Here, the p + 1 convergence
rate for the u solution error is satisfied and so the rate
for the adjoint solution. In this case, the latter rate
is even better than the expected one from (22). The
SUPG scheme keeps the same convergence rate for
both solutions, while the other schemes RD-LDA and
BUBBLE show a order 2 for p = 1 and 1 for p > 1.
Let now examinate the convergence rates for function-
als. We consider the general linear problem (1) and its
numerical discretization (9), where the bilinear form
B(-,-) is continuous on V with respect to a specific
Il l-norm, i.e.

Bw,v) < Cgliwlliivil Yw,veV — (20)

Because the discretization is consistent and thus, the
Galerkin orthogonality is satisfied, we assume that
following a priori error estimate in the |[|-|[l-norm
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holds: there are constants C > 0 and r = r(p) > 0
such that, for Yu € H?*1(Q)

e = wp lll < CH'lutl o1 ) 1)

Finally, we assume that the projection operator PZ
satisfies following approximation estimate in the || |||-
norm: there are constants C > 0 such that, for Vv €
L(Q)

v = P vl < ChlVI ) (22)

Let then assume that the target quantity as described
in (2) with jg and jr smooth functions on Q and T,
respectively. Then we have following estimate

[J(@) — J(up)l = |Bu — uy, 2)|
= |B(u - up, 2= P} 2| (23)

1
< Ch™ ulgr @y lVllz2 )

Once again, to numerically verify the convergence
rate of functionals for a Petrov-Galerkin scheme let
consider the circular advection problem [7] whose re-
sults are tabulated on tables 1 and 2.

The p + 1 order for the functional error is satisfied by
RD and BUBBLE schemes, while for SUPG a super-
convergence rate 2p + 1 is obtained. This behaviour
seems to be strictly connected to the higher order of
the corresponding adjoint solution of this scheme.

4. Error Representation Formula

Let consider the primal numerical problem (9) and
that holds the Galerkin orthogonality condition (14).
Let then notice that by the compatibility condition (3),
using infinite-dimentional trial and test space, the ad-
joint problem can be redefined as

Bw,z) = J(w) YweV

So, an exact error representation formula for a given
functional J(-) results from the following steps, where
Pj, denotes any suitable projection operator (i.e. inter-
polation, L, projection) into "VZ’p,

J@W) = J(up) = J(u — up)
= B (z,u — uy)
= Bu— up,z2)
= B(u — up,z — Prz)
= B(u,z — Ppz) — Bluy, 7 — Ppz)
= F(z— Ppz) — B(up, z — Pr2)

(24)



S0 in summary
J(u) = J(up) = F(z = Ppz) — Blup,z — Ppz) - (25)

where no dependence on the exact solution u appears.
Comptutationally, this error representation formula is
not suitable for obtaing computable a posteriori er-
ror estimation unless the function z — Pz is unknown,
since z € V" is a solution of the infinite-dimensional
adjoint problem. So z has to be computed by the dis-
crete adjoint problem (10). Since (7) holds, we can
solve the adjoint problem by using the same bilin-
ear operator, B(wy, z), used for the primal problem.
Due to the Galerkin orthogonality, the adjoint numer-
ical problem must be approximated in a larger space
of functions than that utilized in the primal numerical
problem. Here, this is achieved by solving the adjoint
problem using a polynomial space that is one poly-
nomial degree higher than the primal numerical prob-
lem, i.e. if v, € (VZ’[I thenz ~ z;y € (VZ,q+l'

The error representation formula written in the global
abstract form of the (25) does not indicate which el-
ements in the mesh should be refined to reduce the
measured error in a functional. So, now the goal is to
estimate the local contribution of each element in the
mesh to the functional error. This local cell contribu-
tion will then be used as an error indicator for choos-
ing which elements to refine or coarsen in the adaptive
mesh procedure. By applying the triangle inequality,
indeed, we have

) = Jun)| < " [Fulz = Pi2) = Bulun, 2 = Pi2)|
keK (26)
where

F(z — Ppz) — B(up, z — Ppz) = Re(un, z — Ppz)
and
Ri(u,v) = (R(), v), + (r(u), C*v)aunr

with R(u) = f— Lu and r(u) = g — Bu. This direct esti-
mate let define for each partition element « the adap-
tation element indicator n,

Il = [ReCn, 2 = Py2)| @7

Adaptive Meshing. Now, we consider the design of an
adaptive algorithm to compute efficiently a given tar-
get quantity functional J(-). The simplest adaptation
stopping criterion will be

/() — J(un)l < TOL
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with TOL a given tolerance. To this aim, we em-
ploy the approximate error bound )’ g |7« to esti-
mate when the desired level of accuracy has been
achieved. Then, we practically enforce

2, Ind<ToL

k€K

Hence, a simple mesh adaptation strategy can be out-
lined as follows:

1. Construct an initial mesh K.

2. Compute the numerical approximation u, € Vj,,
on the current mesh K.

3. Compute the numerical approximation z, € V)
on the same current mesh K and where g > p.

4. Evaluate the error indicators, 7, for all elements
k € K and sum them all up.

5. If X exc Ikl < TOL where TOL is a given tolerance,
then STOP.

6. Otherwise, refine and coarsen a specified fraction
of the total number of elements according to the
size of |n,|, generate a new mesh K and GOTO 2.

5. Numerical Results

In this section, selected numerical examples are
given for scalar advection (and/or reaction) problems.
SUPG, RD and bubble schemes are the numerical
schemes used for all cases. The following tables tab-
ulate values of the functional error and the estimated
error as given in (26) using numerically approximated
adjoint problems.

In addition, an effictivity index is included to charac-
terize the sharpness of the current estimates

lestimated error|
O = —————
|/ (u) = J(up)l
When the exact adjoint solution is used

@) = Jw)l = | >

k€K

(28)

so the corresponding column in the following tables
measures the effect of numerically approximating the
adjoint problem. After application of the triangle in-
equality, the estimate

@) = Ja)l < ) Il
keK
is obtained. Mesh adaptation strategies are usually
based on || and so they depend on this error esti-
mation. As internal cancellations are precluded, the
estimate can usually lose in accuracy. Hence, column
six and seven of the following tables show the current
estimate and its efficiency index.
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Figure 2: Reaction problem : (a) primal; (b) adjoint

0.5

Method h |J (@) — J(up) | 2 il (Oetr) D Ml (Oetr)
SUPG  .0625 4.4835e-07 1.2320e-07 (0.27) 6.2854e-06 (14.0)
SUPG  .0312 4.8891e-08  1.2628¢-08 (0.26) 1.4880e-06 (30.4)
SUPG  .0156 5.4553¢-09 1.2829¢-09 (0.24) 3.6255¢-07 (66.5)
SUPG  .0078 6.3152e-10  1.3283e-10 (0.21) 8.9566e-08 (141)

RD-LDA .0625 2.3770e-05 1.9639-05 (0.83) 2.0265¢-05 (0.85)
RD-LDA .0312 5.9543e-06 4.9327e-06 (0.83) 5.0964e-06 (0.86)
RD-LDA 0156 1.4910e-06 1.2368¢-06 (0.83) 1.2757¢-06 (0.86)
RD-LDA .0078 3.7312e-07  3.0974e-07 (0.83) 3.1908e-07 (0.86)
BUBBLE .0625 5.9175e-06  3.2404e-06 (0.55) 4.0190e-06 (0.68)
BUBBLE .0312  14556e-06 7.9155¢-07 (0.54) 9.7550e-07 (0.67)
BUBBLE .0156 3.6096e-07 1.9585¢-07 (0.54) 2.4039e-07 (0.67)
BUBBLE .0078 8.9876e-08 4.8773¢-08 (0.54) 5.9721e-08 (0.66)

Table 3: Efficiency rates p, = 1 and p, = 2 order of the SUPG, RD and
BUBBLE methods error estimates for the advection reaction problem.

Method h |J () = J(up)l | 2k 70l (Oetr) D 11l (Oetr)
SUPG  .0625 7.4432e-08 7.2144e-08 (0.97) 8.8806e-08 (1.19)
SUPG  .0312 1.0126e-08 9.8401e-09 (0.97) 1.1740e-08 (1.16)
SUPG  .0156 1.3178e-09  1.2815e-09 (0.97) 1.5062e-09 (1.14)
SUPG  .0078 1.6795e-10  1.6335e-10 (0.97) 1.906le-10 (1.13)

RD-LDA .0625 2.0983e-08 1.8213e-08 (0.87) 2.4471e-08 (1.17)
RD-LDA .0312  2.6073e-09 2.2146e-09 (0.85) 3.0422e-09 (1.17)
RD-LDA 0156 3.2153¢-10  2.6966e-10 (0.84) 3.7474e-10 (1.17)
RD-LDA .0078 3.9683e-11  3.3028e-11 (0.83) 4.5879%-11 (1.16)
BUBBLE .0625 13311e-08 1.3106e-08 (0.98) 1.6135e-08 (1.21)
BUBBLE .0312  1.5441e-09  1.4984e-09 (0.97) 1.9342e-09 (1.25)
BUBBLE .0156 1.8277¢-10  1.7538e-10  (0.96) 2.3381e-10 (1.28)
BUBBLE .0078  2.1956e-11  2.0914e-11  (0.95) 2.985le-11 (1.36)

Table 4: Efficiency rates p, = 2 and p, = 3 order of the SUPG, RD and
BUBBLE methods error estimates for the advection reaction problem.
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Figure 3: Analytical solutions linear hyperbolic problem [4]: (a) primal; (b) adjoint

Advection-reaction. The advection-reaction case is
defined by the following linear equation

b-Vu+cu=f inQ

29

u=g onl_ 29

with b = (1,0), c = 1 —sign(x)x. The source term f is

given such that the analytical solution u* of (29) is as
follows
ut = e laemx0? +b—y0)?]

Finally, boundary conditions are consistent by the an-

alytical solution. Once again the target quantity is an

outflow functional such that the corresponding adjoint

problem becomes

b-Vz+cz=0 inQ
z=1 onI,

Figures 2a and 2b show primal and adjoint solutions,
respectively, while error estimation data are tabulated
on tables 3 and 4. Here, RD-LDA scheme seems to be
the best scheme with all estimates which keep close
to exact functional error. What sounds odd is the p =
1 SUPG estimate which seems out of control. This
becomes even more weird by looking to the p = 2
estimate where both thetas converge to one.

Hartmann’s problem. With the following example,
we compare the efficiency of the adjoint based error
estimation, in adaptive meshing, with respect to the
ad hoc estimation procedure.

Let consider the linear hyperbolic problem ([4]):

b-Vu=f inQ

30
u=g onl_ (30)
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with the advection b = %, where
b= O, —x), forx <1,
B 2-y,x) otherwise

The analytical solution is shown in figure 3a, where
the two discontinuites of the two inlet jumps are car-
ried along the charactistic directions of the advection
field. Let then suppose to be interested in the solu-
tion along the outlet boundary segment 1/4 <y < 1.
We solve numerically both problems by the SUPG
scheme p = 2 and p = 3 order, respectively for
primal and adjoint problem. Figure 4 shows the nu-
merical solutions and the corresponding final adap-
tive meshes, generated by the ad hoc residual error
indicators, 724", and the current adjoint weighted-
ones, nidj, respectively. In figure 4c we see how the
final mesh is refined along both discontinuites, giv-
ing a very good resolution for the both corresponding
jumps, see figure 4a. Instead, the mesh coming out
from the based adjoint error estimation refines only
in the neighborhood of the lower jump, see figure 4d,
the one which goes out through the target outlet. The
other jump is then roughly solved but, as the adjoint
solution over that zone is null, the error of the solution
along the second jump do not affect the current target
quantity. This is the reason why it is not refined dur-
ing the adaptation.

Comparing the two procedures, the adjoint-based es-
timation proves to be more efficient, since it reaches
a similar accuracy of the target quantity: |J(e)| =
24697 x 1078 vs. |J(e)] = 1.3100 x 107°, generat-
ing a final mesh with roughly half of the elements:
1771 instead of 3736. Moreover, figure 5 shows how
the target quantity error of the adjoint refinement al-
ways remains inferior to the ad hoc one. However, we
must remind to that this algorithm needs to solve two
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Figure 4: Adaptive refinement for the hyperbolic linear problem (30): (a) Numerical solution solved
on the mesh (c), generated by a based-residual error estimation; (b) Numerical solution solved on
the mesh (d), generated by the adjoint error estimation;
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Figure 5: Convergence of the target quantity error, J(e)
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problems, primal and adjoint, while the simple based-
residual estimation solves the only primal one. Since,
in this case, both problems are linear and the adjoint is
solved with an higher order, the added computational
cost can be remarkable. Anyway, this cost will be-
come negligible for non-linear primal problem as the
adjoint will be still linear.

6. Conclusions

Among different types of error representation for-

mula, we were interested in Type I error indicator. Un-
like Type II error bounds where the only local residual
is taken into account, Type I involves also the solution
of the associated adjoint problem. By it, we are able
to obtain further information concerning the trasport
of the error of computing the quantity of interest.
For the first time, we apply this to error analysis by
using a Petrov-Galerkin discretization. Some schemes
are then implemented: Streamline Upwind PG, Resid-
ual Distribution and a bubble scheme. Theory proves
that the convergence rate of the target quantity error
depends on the chosen scheme. Few linear problems
have been employed to verify the behaviour of these
schemes, while an hyperbolic problem has been used
to test the efficiency of the current refinement with re-
spect to the classical residual based estimation. Now,
further extensions to non-linear hyperbolic problems
are possible.
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Abstract

Residual distribution schemes are discussed in the context of higher order spatial discretization for hyperbolic
conservation laws. The discrete solution is approximated by a finite element space based on triangular Lagrangian
Py elements. A natural subtriangulation of these elements allows the reuse of simple distribution formula previ-
ously developed for linear P, triangles. Curved elements with piecewise quadratic and cubic approximation of the

boundaries of the domain are considered.

In the second part, a new variant of RD scheme is proposed. This particular formulation avoids the sub—

triangulation procedure.

Keywords: residual distribution, multidimensional upwind, high order, curvilinear geometry

1. Introduction

The present work follows a Residual Distribution
approach (1; 2; 3), which is close to continuous fi-
nite element methods, but allows the use of a max-
imum principle to construct nonlinear monotonicity
preserving and truely multidimensional stabilizations.
In previous papers (4) we have exploited the close re-
lation with continuous finite element discretizations to
present a class of higher order residual distribution
methods defined on P, Lagrangian triangular finite
elements. Here we focus on the use of curved ele-
ments to allow for a higher order representation of the
boundaries of the domain, using sub- or isoparamet-
ric transformation from physical space to a Cartesian
parent element.

2. Notations

We consider the steady state solution of a conserva-
tion law on a two—dimensional spatial domain €:

ou

StV F=0 V(x,y) eQcR?, Vt>0, (1)
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where u is the vector of conserved variables and F is
the inviscid flux vector, ¥ (u) = (f(u), gu)). We de-
note by 77, a triangulation of the domain Q, whereby
each triangular element T of the triangulation 77 is
a Lagrangian Pj finite element equipped with K =
w degrees of freedom.

In the simplest case the geometry of the P, triangle
is considered to be linear, defined by its three corner
nodes. Hence, the intermediate nodes on the bound-
ary of the element are all located on the straight edges
and therefore the boundary of the domain ( is approx-
imated by a polygone. Such a discretization will be
denoted as a P Py discretization (P for geometry and
P, for the solution).

We work with elements whose edges are described
by second- and third- order polynomials. Elements
with quadratic geometry will be denoted as P, P;. ele-
ments (P, for geometry and Py for the solution). PP,
elements are called isoparametric, while P,P; with
k > 2 are called subparametric elements. The nota-
tion for P; elements is analogous.

The geometry of the curvilinear P, (P3) element is
transformed to a parent element in -7 space. In our
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Figure 1: Transformation of triangle geometry from physical to ref-
erence space using Lagrange shape functions

case, we define F(&, ) from figure (1) as isoparamet-
ric mapping

e |- x
) hk i
= i R . 2

[y(f,n)} ;"0’ € [y,-} &
where N is the number of degrees of freedom of P, or
P; triangle, respectively. The number k refers to the
order of shape functions ¢; and x;, y; denote the nodal
coordinates of the triangle.

3. Residual Distribution method

For any triangulation 77 the cell residual for a
given triangle is defined as the integral over the tri-
angle of the spatial operator:

ﬂefﬁﬂMWM=§¢Mhﬂm
T oT

N
= Z f a"*y - vu* dx dy &)
s=0 YTs

(Ny . ..number of sub—elements)

where we have used the expression for the Jacobian of
the flux # (u) in (1),

oF () _ (3f1(u) 0fz(u))

d(u) = “4)

ou ou ~  Ou

We can also construct the residual over each P; sub-
element of 7K

o" =56 F*)-itdl (5a)
T
=fa(uhk) Vuhkdxd =d -fVuh’kdxdy
Ty Ty
(5b)

with @* a properly defined local average of d(u) over
the sub-triangle such that conservation is preserved
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(5). The existence of such local average for general
nonlinear conservation law is not guaranteed, but in
case of the conservation law (1) applied to the Eu-
ler equations considered in this work, a conservative
linearisation is possible under the assumption that the
vector of Roe variables changes linearly in each cell.
The basic idea of the residual distribution (RD)
method consists of distributing fractions of this cell
residual to the three nodes of the element 7. The frac-
tion sent to node i € T is denoted ¢; and we require

D=9 (©)

ieT

This requirement can be written in terms of distribu-
tion coefficients B; which for consistency sum to unity

Spi=t. gi=2 )

T
ieT ¢

After assembling all contributions in the nodes, the
nodal equation for node i reads, with D; the set of all
triangles that share node i:

D.9i=0 (8)

TeD;

Since the distribution is restricted to the nodes of the
triangle itself, the stencil of the scheme remains com-
pact. This equation can be solved by embedding in
a pseudo—time iteration, i.e. by finding a steady state

solution of
) 0= ©

TeD;

where |S,| is the area of median dual cell.

3.1. Residual Distribution schemes on P elements

For a given P; (both solution and geometry) trian-
gle we consider the set of normal vectors {7} jer, de-
fined by the inward normals to the edges of T facing
each node j € T (see figure 2 left). The norm of 7;
is equal to the length of the edge. Let us define the
upwind parameter

kj==da -il; implying Zk,- =0 (10)

€Ty

| —

In this case, using a conservative linearisation (eq. 5b,
10), we can express the cell residual as follows:

o = ﬂmuﬁw=IVﬂMwm > ko
oT €T

1)



Figure 2: Definition of the normal vectors 7; in P} and P elements

When all contributions for a given node are assem-
bled, we end up with the following system of nodal
equations, similar to equation (9), to be solved using
explicit or implicit pseudo-time iterations. For exam-
ple, using forward Euler method, we get:

uft+l _

u?
Si-——L+ > ¢l:=0 (12)

1
At T, ieT,

Many distribution schemes (defining the split resid-
uals ¢;) for P; elements have been developed in the
past (4; 6; 7). A particular class satisfies a multidi-
mensional upwinding property (MU). Such distribu-
tions satisfy the requirement that a node in a triangle
does not receive a contribution if its opposed face is
an outflow face. The condition is easily imposed by
requiring ¢; = 0 whenever k; < 0. Within this work,
we limited ourselves to the use of the LDA (Low Dif-
fusion A) scheme. Denoting by k" and k; the positive
and negative part of the upwind parameter, k* = #,
the distribution coefficients of the LDA scheme can be

written as
kr
LDA i
A= (13)
G
This scheme is of order O(k + 1) (k being the order of
interpolating polynomial), but not strictly monotone.
We refer the reader interested in detailed description

of the LDA scheme to other literature (1; 8; 4; 6; 9).

3.2. Residual distribution schemes on P\ Py elements

Consider now the extension of multidimensional
upwind (MU) schemes to high order P;P; elements.
We will assume that the inward normals 7i;’s are de-
fined on the local P; sub-elements Ty € T, as shown
on figure 2 (right) for k£ = 2. Note that if we consider
a P Py element (P element for the solution but only
P, triangles for the geometry, defined by the 3 corner
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nodes), the inward normals of the sub-elements can be
deduced easily from the ones of the parent element by
a simple rescaling. We compute the residual on each
sub-element:

o™ = f VF ") dQ = 95 F @) -ndl  (14)
T, T

Then, this residual is distributed to the 3 nodes of the
sub-element, using the LDA distribution scheme (13)
developed for P; triangles:

o =By’ (15)

The linearization used to compute the parameters k;
can be based on any linearized state over the sub-
triangle, without affecting accuracy nor conservation.

Remark. This is not the only strategy to achieve
residual distribution schemes on Py elements. In
particular, we refer to Lax Friedrichs distribution
schemes of Abgrall and collaborators (10), (11). In
this case the residual is computed on the complete Py
element and then distributed to the N nodes of the el-
ement without making use of a sub-triangulation.

3.3. Curvilinear P, Py and P3Py elements

We consider elements where the geometry is either
piecewise quadratic or cubic. The geometry and nu-
merical solution can be discretized independently so
in general the solution can have any order k. However,
we focus on isoparametric (P, P, or P3P3) high—order
elements.

To ensure conservation of fluxes, we compute the
sub-element residual from equation (14) as a contour
integral:

P = F - idl (16)
ar,
The boundary 9T is described by transformation (2).
For every face on 0Ty, this transformation is a function
of only one parameter :

x = x(4)
y=y)
We integrate numerical the fluxes of (16) using Gauss

quadrature: 3 points per face f of the sub—element for
P, and 5 points for Ps:

A7)

N
56 F) il =Y wolF(ug) - igllg,  (18)
f g=1

Jg = X2 + 374y 19)



where J, is the Jacobian of transformation (17) at
quadrature point g. We use the transformation also
to compute the normal ;.

The integral over f in equation (18) is approxi-
mated:

e by three-point Gauss quadrature for each face of
PP, triangle

e by the same quadrature for each face of each
sub—triangle in the case of P;P, and P, P, ele-
ments

e by five—point Gauss quadrature on each sub—face
of the P3P3 element

The quadrature nodes and weights on the biunit inter-
val are given in table 1.

Quadrature points Weights
0.0 §
PPy, Pioy)Pa e z
=5 9
0.0 0.5688888889
P5P; +0.5384693101 0.4786286705
+0.9061798459 0.2369268850

Table 1: Gauss quadrature used to approximate the residuals ¢

3.4. Subsonic flow around a cylinder

We present results for a test case with stagnation
point, namely the flow around a circular cylinder at
M, = 0.38. We consider four O-meshes with 16 X 5
M1), 32 x9 (M2), 64 x 17 (M3) and 128 x 33 (M4)
points as described in (12). The first number indi-
cates the number of nodes in the circular direction of
the mesh, the second number refers to the number of
nodes in the radial direction (figure 3). The radii of
the circles in each mesh follow a geometric series

2 &
ri=ro|l+—== > a"|,j=12,...32, (20

where @ = 1.1648336 and ro = 0.5 is the radius of
the cylinder. The farfield boundary is located at 20
diameters from the center. To have the same num-
ber of degrees of freedom and make a fair compar-
ison between the P;P; and P,P, schemes, we cre-
ate a P; sub-triangulation of each P, triangle. The
P3P; meshes were created independently such that the
number of elements is equal for P P,, PP, and P3P3
meshes. We plot the P; solutions on all four meshes
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Figure 3: 16 X 5,32 %9, 64 x 17 and 128 X 33 meshes for subsonic
cylinder test case.

Figure 4: Mach isolines plotted for Ma € (0, 1), AMa = 0.025 on
mesh with PPy elements.

(figure 4). Higher—order solution is shown in figure 5
for M2 and M3. Figure 6 presents the pressure coef-
ficient on the cylinder wall and the entropy deviation
on mesh M1. We measure the rate of convergence
again by computing the relative decrease of the L,
norm of entropy error X as the mesh is refined. The
measured order is reported in figure 7. We did not
include the entropy error on M1 in the computation
of the convergence order of PP, discretization, since



this error is very large (all values are listed table 2).
As aresult, the convergence rate measured on all four
meshes seems to be very high due to rapid decrease of
the entropy error as the element size becomes small -4 PP, —B—
compared to the curvature of the cylinder.

PP PP,

Mesh | NDOF 12|, IIZ]],,
Ml 288 4.87E-02 6.03E-02
M2 1088 7.64E -03 1.78E-03
M3 4224  1.13E-03 1.57E-04
M4 16640 1.78E -04 2.04E-05

Order 1.99 3.05

PP, P3P;

Mesh | NDOF 12|, IIZ]],,
MI 624 1.00E-02 1.46E-03
M2 2400 1.78E-03 5.62E-05
M3 9408 1.27E-04 5.35E-06
M4 37248 2.76E-05 5.33E-07

Order 2.98 3.84

Table 2: L, norm of entropy error (X): subsonic cylinder test case.

P,P,

P;P;

Figure 6: Pressure coefficient (left) and entropy deviation s — s;y,
(right) on the cylinder wall on mesh M1
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Figure 7: Subsonic cylinder test case; L, norm of the entropy error

Figure 5: Mach number isolines plotted for Ma € (0, 1), AMa = ! N .
as a function of the mesh size A.

0.025 on meshes M, and M3. Left: P, elements, right: P3 elements.
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4. Residual distribution schemes with variable dis-
tribution coefficient

We consider a linear differential problem
Lu=f,

with for example L = A1-Vor L =21-V -vA. The
numerical solution #"*, is a FE representation polyno-
mial of the discrete solution:

%, T

Temesh jeT

When k = 1 (u"* is a linear polynomial), RDS pro-
ceeds as follows

1. Compute residual:

fLuth Z(nga,dX)uj 1)

JjeT
—Z%f
jer
defining k; as
ki=Le;

2. Distribution: achieved eventually via the defini-
tion of coefficients 8] = B ({k;}jer, up, A, h, @)
3. Assembly/resolution: obtain the values {1} jemesh
as a solution of Y’ ﬁTcDT 0
Tijer
In the linear case the derivatives of the basis func-
tions are constants. This allows the following re-
interpretation of the above scheme as a Petrov—
Galerkin scheme with particular test functions.

1. Definition of the test function S3:

ki= Lo Bix) =Bk} jer, un, A, h,r")
= Luylr

with 7

2. Integrate: @] = f Bi(x)r’

3. Assembly/resolutlon. get the values {1} jemesh by
solving0= ¥ @7 = ¥ [Bi(x)rk
Tljer TljeT 7

Since all the known definitions of 7 depend on the
definition of k; (i.e. on the derivatives of the shape
functions), the two schemes are identical in the P!
case. The schemes are not the same anymore for P
interpolation, k > 1.
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4.1. Conservation issues

In case we need apply the method to nonlinear con-
servation law
V.-F=0

a necessary condition for the scheme to converge to
some weak solution is that

Zgoj SET(uhk) n

JjeK

is satisfied for some approximation of the physical
flux ¥ which is continuous across element edges. One
possible approach to satisfy this requirement is a suit-
able volume integration.

Suppose that the flux is approximated by Finite El-
ement shape functions ¢’

F) = > F e (22)

jeK

The Finite Element space which interpolates the dis-
crete flux need not be the same as the Finite Ele-
ment space used for the solution variable. However,
it should be richer to account for the nonlinearity of
the flux ¥ = ¥ («). Assuming the continuity of the
flux function, the following relation is satisfied for ex-
act integration

fV CF Wy = SBT(uh’k) )
K X

Since the flux is interpolated as described in equation
(22), the following identity holds

f CF W) = F - fV(pj

JjEK
= F - Z IKIwo Vel (x,)
JjeK gek

The quadrature points x, and weights w, are chosen
such that the gradients of flux shape functions are in-
tegrated exactly. The nodal residual is then evaluated
as

f BOV-F W) = 3" " [Klwyile) F )V (x,)

JjEK geK

4.2. Advantages of RD formulation with variable 3

The RD schemes with variable distribution coeffi-
cient S work without any substantial modification not
only on simplex elements, but also on tensor-product



elements (quadrilaterals in 2D). The construction of
sub—elements used previously for the RD method be-
comes an important issue as the polynomial order of
the underlying FE interpolation space becomes high
(number of quadrature points per element quickly in-
creases) and as we go to three dimensions (division
into sub—elements becomes rather complex to imple-
ment in computer codes).

The generic formulation (21) avoids these problems
and at the same time, it preserves the upwind nature
of the original formulation of the RD schemes.

4.3. Examples of schemes
LDA

For the LDA scheme, we set

k+

ki=Lg; = A- Vg, T= =

® ¢ Bi S e

jer 7
and the nodal residual becomes
Lo)*t

of = [ 21, ax
> (Lyj)
T jeT

SUPG

Using the notation above, the SUPG residual can be
written as

¢5iT = f((,oi + L) Luy, dX
T

with the upwind stabilization parameter T = ( ), k;’)‘l .
ieT

5. Scalar advection test case

Given a rectangular domain, we consider a steady
advection equation

A-Vu =0 with A= (y,—x)

A cosinus profile is imposed at the inlet. The advec-
tion field is supposed to rotate this profile in the direc-
tion indicated in figure 8. The solution obtained with
the LDA and SUPG schemes on a mesh consisting of
P, triangles is depicted in figure 9.
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inlet

Figure 8: Setup for linear advection test case

6. Euler 2D test case

The extension of the scheme to a (nonlinear) sys-
tem of equations was tested on a simple test case for
Euler equations in 2D dimensions. Two supersonic
states uz/g = (p, pu, pv, E)p g are prescribed at the left
and right half of the inlet (inlet boundary condition),
and also in the left and right half of the whole domain
as initial conditions (see figure 10). This test case
was chosen because it does not require wall bound-
ary condition, which are not implemented at this mo-
ment. The solution eventually forms an expansion fan
(figure 11).
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