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Abstract

This paper presents some advancement of the acoustics beamforming technique developed in the VKI. The devel-
opment is focusing on the L; norm generalized inverse beamforming methodology. The algorithms are improved
and the present study introduces an adaptive methodology to refine the source grid. The refinement gives a non-
uniform, unstructured source plane grid. The method helps to achieve similar results compared to the uniform
grid solution with reduced number of grid points. This is useful when the searching zone and the grid is relatively
large compared to the extent of the true sources. With this method the required computational resources for the
inversion procedure can be decreased. Results are promising, but still improvement of the adaptive refinement
algorithm is advisable. The performance of the algorithm is presented in this paper on a numerical test case for

the generalized inverse beamforming algorithm.
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1. Introduction

There is an increasing desire for acoustic noise re-
duction of machines, those principles of fluid mechan-
ics nature. Along with the numerical aeroacoustic ad-
vancements of understanding the principles of aerody-
namic noise sources the need for experimental testing
is increased to quantify complex sources or provide
validation database.

The aim of this PhD project is to develop quanti-
tative acoustics measurement configuration for aeroa-
coustic source localization in non-ideal acoustics en-
vironments. In several cases it is desirable to pre-
form aeroacoustic measurements in non-anechoic en-
vironments, such as aerodynamic wind tunnels or in
situ industrial measurements. The beamforming tech-
nique would extend the use of advanced aeroacoustic
testing in a cost efficient way in such environments.
The beamforming method was first used in radio as-
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tronomy and radar technology to obtain a direction-
ally sensitive antenna for the detection of the incom-
ing signal direction [1]. The principle of this tech-
nique is to utilize the signal of several microphones in
such a way that the directional sensitivity of device is
adjustable. This is usually achieved with digital sig-
nal processing techniques on the simultaneously ac-
quired data of the microphones. The acoustics field
can be scanned point by point in order to find the un-
known source positions by ‘steering’ the array sensi-
tive ‘spot’ (main lobe) into different spatial directions,
at a given frequency. The result is the so called the
beamforming map, shows the source amplitude dis-
tribution in the spatial region that have been scanned.
Today’s this technique is widely used in different con-
figuration for acoustics source identification. Many
application dependent microphone arrangement exist,
using advanced data processing algorithms, in order



to obtain high resolution and clean source maps [2].
One of the method is using the mathematical concept
of generalized inverse of matrices [3]. This is the tech-
nique used in the VKI beamforming project.

After the description of the motivation of the study,
first the theoretical background of the used general-
ized inverse method will be presented in the first sec-
tion. This is followed by a description of the grid
adaptation technique and the used numerical source
model. Then the adapted grid results will be shown
compared to a conventional uniform grid. This is fol-
lowed by the discussion of the results. Finally the
study is concluded in the last section.

1.1. The motivation

The previous investigations in the VKI of the gen-
eralized inverse beamforming (GIBF) technique has
been showed that the method is sensitive to the source
modeling error introduced by a source grid that is not
includes all the significant sources of the measure-
ment. This is often a situation when uniform source
grid is used and the measurement contains disturbing
sources far from the investigated model. This is a typ-
ical situation of a measurement in non-ideal acous-
tic environment. These errors decrease the robustness
of the method. The uniform grid is usually extended
only with a small amount beyond the expected loca-
tion of the sources in order to reduce the computation
resources and in this way this type if grid is not suit-
able for such measurement cases.

The current study gives an attempt to solve the
problem by automatically adjust the model source grid
in order to place many grid points close to the approx-
imate location of the sources and remove the model
sources where no source is expected. The approxi-
mate location of the sources is detected by the first
iteration on a uniform coarse grid that can be chosen
to include not only the investigated sources but other
disturbing sources as well. The adaptation of the grid
later gives sufficient source resolution for the final it-
erations.

2. Theory

Many different beam-forming methods have been
developed in the past few years for aeroacoustic ap-
plications [2]. In this section the generalized in-
verse beamforming method is introduced based on
the formulation of [3] with iteratively reweighed least
squares (IRLS) method for the solution of the L; norm
problem.
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2.1. The microphone array data model

The microphone array data represents the sound
field generated by physical sound sources. These
sources are modeled with an appropriate source model
and then this model problem is solved to retrieve the
unknown model source amplitudes those are supposed
to give a good estimation of the true physical sources.
In this paper monopole representation of the sound
sources is assumed. The transfer matrix involves each
model source and each microphone can be written as:

oKy
4nir(yy, y))l

where the transfer matrix V is called the array man-
ifold matrix in beamforming terminology. The dis-
tance between the microphone position Yy k=1.N,,
and source position yj, [ = 1.Nyis r = y;' —y;. The
wave number is k = ¢/w at a given circular frequency
w. The number of microphones and model sources
denoted by N,, and N, respectively.

The model sources can be represented by their cross
correlation matrix Cg of size Ny X N, formed by the
unknown complex source amplitudes s. The source
cross spectrum matrix is diagonal if the model sources
are perfectly uncorrelated (they are incoherent) giving
a full rank matrix. The matrix is singular with the
rank of one, if the model sources are perfectly cor-
related (coherent sources). Finally, in case of partly
correlated model sources the matrix has a full rank,
with non-zero off diagonal elements.

During the measurement, the microphone array
cross spectrum matrix Cyx can be computed from the
measurement time data with the help of fast Fourier
transformation. The elements of Cy represents the
amplitude and phase correlation between the acoustics
signal sampled at different spatial points. The rank of
the array cross spectrum matrix indicates the number
of incoherent sources. The array cross spectrum ma-
trix Cyx can be represented by its eigendecomposition
since it is Hermitian.

€]

Vi

Cyx = UAU' )

Introducing the previous source reconstruction idea
that the model sources with proper amplitude distri-
bution can describe measured cross spectrum the fol-
lowing relation can be written:

UAU" = VC V' (3)

This equation is the basis of the GIBF formulation.



2.2. Generalized Inverse Beamforming algorithm

The GIBF algorithms are based on the inversion of
the wave propagation problem relating the assumed
possible source distribution and the measured acous-
tic field. The idea of the reconstruction is to treat one
coherent source distribution at a time, meaning that
a microphone array cross spectrum matrix Cyy can
be constructed from the summation of C, for each
eigenvalue A, of Cy, where n = 1..N. The problem is
solved for the desired number of eigenvalues and the
final source map is the squared sum of the resulting
reconstructed source maps for each n. The problem of
Eqn. 3 can be simplified with this idea as follows:

u" 1, = Vs @)

Introducing the notation b"” = u" V4, for the eigen-
mode 7 the following inverse problem has to be solved
to retrieve coherent source amplitudes s":

Sn — V—lbn (5)

In order to retrieve the source amplitudes general-
ized inverse method has to be used, because of the
propagation model can contain more sources than mi-
crophones or vice verse, therefore the coefficient ma-
trix of the problem is non-square.

Non-square coefficient matrices represent underde-
termined problems when the number of unknowns
is larger than the number of available observations
Ng > N,,. Overdetermined system is also possible
when the number of unknowns is less than the num-
ber of observations Ny < N,,. The non square matri-
ces arising in the beamforming problems are usually
underdetermined since the number of measurement
points are limited by the applied hardware (the num-
ber of microphones and acquisition channels) and the
number of unknown model source amplitudes are user
determined by taking into considerations the resolu-
tion of the algorithm (that depends on the frequency of
interest and the microphone array size) and the scan-
ning zone size.

2.3. Regularized solution methodology

If the problem is underdetermined a robust solution
of Eqn. 5 can be obtained by imposing additional a
priori information on the sources. Certain order of
smoothness of the solution can be such an additional
information. In the simplest case a constraint giving
priority to the source distributions with smaller norm
can be constructed. In order to allow this side con-
strain to have an effect on the solution, the residual of
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the solution in some p norm R, = [|[Vs" — b"||, is al-
lowed to be higher than zero. These requirements can
be formulated as a minimization of the following cost
function.

Jp = €lls"ll, + IVs" = b, (6)

The solution of the inverse problem formulated as
a minimization problem helps to overcome on the
problem of the often badly conditioned V. The cost
function of Eqn. 6 with p = 2 represents the origi-
nal Tikhonov regularization problem where the regu-
larization parameter is €. The regularization param-
eter can be considered here as a user definable pa-
rameter controlling the balance between the solution
norm and the residual norm R,. If € = 0O the resid-
ual norm is minimized leading to the unregularized
solution. This can give meaning full result in numer-
ical test cases when the condition number of the ar-
ray manifold matrix V is small and there is no mea-
surement error present in b”. When € = oo the ef-
fect of the constraint vanishes and only the solution
norm is minimized. This would essentially lead to the
s = 0 solution. Excessive regularization also decrease
the resolution of the source maps, due to suppressing
the effect of the smallest singular values of V [4] .
Knowing that the small or zero regularization gives
non-physical results, in real measurement cases the
amount of the applied regularization should be care-
fully adjusted to the investigated case otherwise quan-
titative beamforming or desired resolution is not pos-
sible. In order to choose an optimal regularization pa-
rameter the L-curve analysis is used in this study, by
defining the optimum at the corner of the curve [5].
This is automatically detected by the algorithm in the
present L, norm implementation.

The solution of the minimization of the cost func-
tion Eqn. 6 with a given € and p = 2 can be written
as:

s" = VI(VVT + )" (7

The resolution of this method is only slightly better
than the least squares beamformer, and as it is pro-
posed by Suzuki [6; 3] the issue can be addressed by
replacing the L, norm with L; norm in the cost func-
tion Eqn.:6 (means p = 1)

This cost function prevents the spreading of the am-
plitudes between grid points close to each other. Con-
trary to the p = 2 case when direct solution is ex-
ist with Eqn. 7 the minimization problem of the cost
function Eqn.: 6 with (p # 2) can be solved only with
iterative procedures. One solution, that is proposed



by [3], is to use the iteratively reweighed least squares
approach to obtain a solution.

sp = WVI(VW, VT + )b (8)

Here W, = diag(lsZIz”’) is a weighting diagonal ma-
trix, and the iteration counter is g. The iteration is
stopped when the solution norm begin to increase, or
the maximum number of iteration is reached, that is
Gmax = 15 in this study.

During this iteration procedure the number of the
unknown model sources can be decreased by remov-
ing the smallest amplitude sources at each iteration.
This is increasing the speed of the iteration and can
also increase the final resolution of the algorithm.
However it is complicating the stopping criteria of the
algorithm since small level sources can be removed
by the inappropriate stopping criterion. This proce-
dure is proposed to use by [3]. In this paper an alter-
native solution methodology is proposed by using an
adaptive grid technique to reduce the number of points
therefore speed up the iteration and allow the proper
resolution of every sources on the source map. It is
worth to note that the problems presented here always
falls into the category of the underdetermined system
of equation.

2.4. Adaptive re-meshing of the model source domain

For the adaptive modification of the model source
positions an unstructured grid is created with the help
of the algorithm presented in [7]. The meshing algo-
rithm takes the geometry and a distance function as
an input and it is initialized with a uniform grid point
distribution. This initial grid point distribution is de-
fined by the user as well as the boundaries of the 2D
domain where the source model have to be imposed.
The distance function is prescribed by the result of
an initial GIBF calculation on the user defined uni-
formly meshed domain. In the present case this in-
volves only one iteratively reweighed least squares it-
erations (¢ = 1 in Eqn. 8). The resulted source map
is smoothed with a moving average filter in order to
have a smooth size control function and it is used with
the help of a linear interpolation function to obtain the
relative distances in the location of every unstructured
grid points for the meshing algorithm.

The peaks on this map prescribes where the mesh
should be fine and the valleys where it can be coarse.
In real situations when the aeroacoustic source nature
is of broadband type, this grid can be used to calculate
source amplitudes for the close spectral lines also and
therefore it is not needed to be recomputed often.
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3. Application on a numerical test

In this section the application of the presented adap-
tive model source grid generation and GIBF algorithm
is presented on a numerical test.

3.1. The model of the true sources with added noise

The used test case consist of two monopoles placed
at x, y coordinates [-2A4,—24], and [24,21] respec-
tively. The wavelength is denoted by A. The source
plane is placed 11.664 away from the plane of the mi-
crophone array (corresponds to 1m at f = 4000Hz
with the defined sound speed). Both monopole source
has an amplitude of 1 kg/s?>. The used microphone
array layout is a multi-arm spiral layout of 32 micro-
phone positions, depicted in Fig. 1. The origin of the
reference coordinate system is defined in the center of
the array as it is shown in the picture.
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Figure 1: Optimized multi-arm spiral array geometry

In the presented test case the microphone array
cross spectrum matrix Cyy is directly generated from
the known position, frequency and amplitude of the
imposed sources. In order to simulate realistic cross
spectrum matrix additional noise is generated and in-
troduced to this cross spectrum matrix. The sources
are considered to be coherent.

3.1.1. Random noise cross spectrum model

The cross spectrum matrix is a positive semi def-
inite Hermitian matrix. By introducing additional
noise to simulate the real measurement scenario these



properties has to be respected. The array cross corre-
lation is a transformation of the source cross correla-
tion matrix with the array manifold matrix that is writ-
ten for the true source locations. Since Eqn. 2 holds,
each orthogonal eigenmode can be treated separately
and their cross spectrum can be formed by the signal
vectors X;.

Nin Nin

K
Cu=) Ch=> % D xtgit - (9)

n=1 n=1 m=1

Averaging process is taken place for K samples
of the microphones signal vector (length N,,) can be
written:

X; = Vs" +x! (10)

noise

where x? . is the additive noise formed by intro-
ducing a signal with random phase and constant am-
plitude as a fraction of the monopole source amplitude

computed for the array center.

lIs"ll' i
n . — LLTTW 11
Xn()lS(’ ﬁ4ﬂ,Le ( )

where w € U(0, 1) is a vector of N,, elements from
a uniform random distribution U(0, 1). The L is the
array source distance (L = 1m in the study), s” is the
imposed source amplitude vector and S is a user de-
fined parameter controlling the level of the introduced
noise. The number of averages K also has an effect on
the generated cross spectrum. As the number of aver-
ages increase the noise in the cross spectrum decrease
while the auto spectra in the diagonal still contains
the averaged level of noise. In this way cross spec-
trum matrix with similar white noise representation as
of the real measurement scenarios can be build. The
present test case 8 = 0.05 and K = 60.

4. Results

The normalized ordered eigenmodes of the noisy
microphone array cross spectrum matrix is illustrated
in Fig. 2. It can be seen that all the eigenmodes are
non-zero due to the added random noise, but the first
one has a significantly larger value than the others.
This is the expected coherent mode, corresponds to
the defined sources and the associated noise in that
mode. In the reconstruction of the sources therefore
only this eigenmode desired to be considered.
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Figure 2: The normalized ordered eigenmodes for the test case

First the reconstruction is presented on a uniform
grid without refinement. The grid size is chosen to be
64 along which 101 grid points are placed in each di-
rections. The reconstructed source map is presented
in Fig. 3. Both sources are well retrieved. The
source map spot size is about 0.31 computed for the
spot half width. The level of the spurious sources is
small. The integrated source amplitude is approxi-
mately 0.5[kg/s?] computed for the half width spot.
In previous studies linear dependence of the source
amplitude of the size parameters of integration region
have been found, therefore the half width integrated
value (size parameter 0.5) should correspond to ap-
proximately of the half of the true source amplitude.
One should not forget that the added noise can cause
some additional uncertainty. In the light of these con-
siderations the reconstructed amplitude corresponds
well to the true source amplitude as well as the po-
sition of the sources.

The reconstructed source field of the same micro-
phone array cross spectrum matrix can be seen in
Fig. 4 for the adapted grid. The distance function
for the adaptive mesh generator was produced with
one GIBF iteration on a 51 X 51 grid and the resulted
source map is smoothed with a 19 point moving av-
erage filter. The final number of grid points is about
2930 in this adapted grid, and the model source dis-
tribution is plotted in Fig. 5. The model sources are
strongly clustered around the true sources, while in
the other regions of the source map few points are
placed. The grid adaptation algorithm is used 20 retri-
angulations in order to obtain the present distribution
of the points. The initial uniform distribution of the
grid points for the grid generation algorithm is chosen
in order to have approximately the same model source
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Figure 3: The reconstructed monopole source amplitude on the uni-
form source grid 101 x 101

density around the sources as in the 101X 101 uniform
grid. The source map spot size is about 0.31 based
on the spot half width. The spurious sources levels
are higher than in the uniform model source distribu-
tion case. The integrated source amplitude is approx-
imately 0.46[kg/ s2] close to the values found on the
uniform grid.
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Figure 4: The reconstructed monopole sources on the adapted grid
of approximately 2930 model sources. (The colour map is interpo-
lated to a 101 x 101 grid)

The convergence of the IRLS iteration is plotted
in Fig. 6. The plot shows the continuous decrease
of the absolute value of solution summed for all grid
points, that is the imposed constrain in the regulariza-
tion method.

The effect of the non-uniform grid on the regular-
ization method can be measured by comparing the
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Figure 5: The adapted model source positions. 101x101
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Figure 6: The convergence of the GIBF IRLS algorithm on the
adapted grid.

singular value distribution of V (the spectrum of V)
in case of the uniform and the adapted grid [4]. The
ratio of the highest and smallest singular values gives
the condition number of the of the matrix. The value
of the condition number indicates the level of ill-
posedness of problem. The higher the condition num-
ber the more regularization should be used to over-
come the amplification of the errors during the inver-
sion process. The singular value distribution for the
uniform grid and the adapted grid is shown in Fiq. 7.
The adaptation significantly changed the singular
value distribution of V. The singular values are signif-
icantly decreased. The condition number of the uni-
form grid model is 1225 while in the non-uniform grid
model it is 1990. The adaptation of the grid is in-



creased the condition number, however this increase
in not significant and it is not expected that it is chang-
ing the behavior of the inverse problem. The condition
number of both cases can be considered as relatively
small and the problem is not severely ill-posed.
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Figure 7: The distribution of the singular values of V for the two
different meshes.

5. Discussion

Comparing the results obtained on the adapted and
on the uniform grid both gives very similar source
maps. The resolution and the source amplitudes are
in good agreement. The uniform grid solution is a
bit cleaner and the spurious sources are represented
with smaller amplitude than in the case of the adapted
grid solution. In this respect the uniform grid solu-
tion is slightly better than the non-uniform grid so-
Iution. The actual level of the spurious sources also
depends on the used noise model. The applied ran-
dom noise model significantly changed the distribu-
tion of the eigenmodes, that can be observed in Fig. 2.
In case of the noiseless cross spectrum matrix only
one non-zero eigenmode would exist. However in the
present case all eigenmodes are non-zero and the sec-
ond largest eigemode value is about 10% of the largest
one. This implies the strong effect of the noise on the
reconstruction and on the results. The test case shows
that the algorithm handles well this level of random
noise. The good resolution of the L; norm algorithm
can be observed in both cases, that gives a resolu-
tion of approximately 0.31 computed for the spot half
width size on the source-map. This is very close to
the A/4 limit of the resolution. The usability of the L,
norm generalized inverse beamforming method on ar-
bitrary source map configuration is confirmed by the
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test, without the loss of the resolution or source am-
plitude prediction.

The convergence of the algorithm is good in the
non-uniform grid also. The convergence characteris-
tic shows that several additional iterations could be
performed in order to further increase the accuracy.
However it is not expected that the presented results
changes significantly.

The inspection of the singular values draws an im-
portant behavior of the grid adaptation. The distribu-
tion of the singular values are significantly changed
compared to the uniform grid, while the condition
number, that is the ratio of the highest to smallest sin-
gular values, only slightly modified. Considering the
fact that the number of model sources decreased by a
factor of approximately 3.7 (from 10201 to approxi-
mately 2930) and their distribution changed to form
two dense spots, suggest that the condition number
cannot be significantly changed by varying the model
source positions and number, in the same area, if the
minimum distance between the points kept approxi-
mately unchanged. This is an interesting founding ad-
ditionally to [8] where they found that the condition
number is significantly affected by the microphone
spacing, the source distances compared to the wave-
length and the source array distance. They found also
that the condition number of the problem is the small-
est when the model source geometry is matching with
the microphone array geometry (i.e. the distribution
of the sources on the source plane are similar to the
distribution of the microphones on the array plane).
The fact that distributing the sources in an adaptive
manner does not changed the condition number signif-
icantly, allows to prepare efficient adaptive grid tech-
niques to resolve large source domains with the gen-
eralized beamforming method. These findings should
be studied more precisely when efficient algorithms
are intended to be created.

Concerning the required CPU time of the algorithm
slightly better than linear speed-up have been found
when considering the number of grid points used in
the uniform and adapted grids. If the CPU time re-
quired for the uniform grid solution is denoted by 7,
then the solution of the same problem with the adap-
tive grid method is requires ~ 0.27T,, from which the
re-meshing is ~ 0.047,. The figures are measured
on a 2.5Ghz Intel CPU with 6Mb cache and 2Gb of
RAM. The numbers shows the required computational
resource is reduced, and that can be still slightly im-
proved by reducing the time required for the re-build
of the source grid by using a faster implementation if
the method of by using different technique. The used



method of [7] known to be a bit slow especially on
large meshes.

The results emphasize that the appearance of the
higher level of spurious sources depends on the model
source grid. The distribution of the points has to be
chosen carefully and low level of spurious sources can
be achieved by using the uniform grid in the expense
of higher computational cost. This results points out
that the method to distribute the model source points is
critical and can be the target of further improvements
of the adaptive source grid beamforming technique.

6. Conclusion

In this paper the adaptive model source grid re-
finement technique is presented and evaluated with
the help of a numerical test case. The generalized
inverse beamforming method is used to retrieve the
source positions and amplitudes with the L; norm
formulation solved by the iteratively reweighed lest
squares technique. For the regularization parameter
choice the L-curve method is used. The retrieved
source amplitudes and positions agree well with the
imposed source parameters. The resolution is close
to the A/4 limit on the uniform as well as on the re-
fined grid. The introduced significant level of random
noise in the cross spectrum matrix of the microphone
array does not prohibit the good quality reconstruc-
tion. On the other hand it causes the appearance of
spurious sources on the source map especially in case
of the adapted source grid. The level of these spuri-
ous sources can be possibly decreased with the careful
choice of the grid size distribution function. This pos-
sibility has to be investigated when robust adaptation
method is searched for.

The solution procedure with the mesh adaptation
to the actual source geometry helped to reduce the
CPU time of the computation with a factor of approx-
imately 3.7. The reason is identified as the reduc-
tion of the model source points in the refined mesh.
Roughly linear decrease of the computation time with
the amount of source points in the final meshes can be
achieved.

The condition number of the model problem is also
investigated. It is observed that the condition number
does not changed much between the uniform and re-
fined mesh case. This is additionally supports the idea
of using an adaptive model source distribution.

With the help of the adaptive model source grid
technique the source domain size can be increased.
Consequently one of the important source of error,
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the model error of the generalized inverse beamform-
ing can be decreased. The grid adaptation algorithm
therefore helps to extend the possibilities of the beam-
forming methodology for non-ideal acoustics environ-
ments.
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Abstract

The exact analytical solution for the scatteringtofal fan noise by a rigid corner is addressed. The theory
proposed for a monopole is first extended in order to compute the scattered field of a dipole. Combining the
extended model with the dipole array approach, the scattered field of tonal fan noise by a corner is computed.
Different blade forces and fan orientations are tested. A very good agreement is satisfied for all configurations in
comparison with numerical simulations performed with a commercial BEM software.

Keywords: Aeroacoustics, tonal fan noise, scattering by a rigid corner.

1. Introduction pute acoustic scattering by complex geometrigs [
However they are knowto be dependent on the mesh
Exact analytical solutions addressing the acoustic resolution, such as the assumption of the requirement
free-field radiation from aerodynamiwise sources of 10 elements per wave length,[2; 3]. At higher
exist for many aeroacoustic problems. However, due frequencies, the number of elements required for an
to installation effects and presence of solid surfaces in accurate predictiomcreases, hence the numerical so-
radiation field, free-field propagation condition may lution becomes computationally demanding. There-
become invalid. Scattering of acoustic waves by ob- fore, it is more convenient to use analytical solutions
stacles therefore needs being taken into account. for high frequency problems if possible. For problems
This paper deals with the analytical solution for the including simple geometries such as an infinite plane
scattering of aerodynamic noise by a rigid corner and [4] or a semi-infinite plate [5], exact analytical scat-
its application to tonal fan noise. One of the possible tering techniques can be used independent from the
application areas is the cooling units of locomotives mesh resolutionAn analytical method was proposed
in parking position. The noise generated by a cooling by MacDonald in order to deal with the acoustic scat-
unit located on the top of a locomotive and its scat- tering by a rigid wedged].
tered field by the corner of the locomotive-body may
resultin annoyance for passengers_waiting_on the plat- 2. Scattering by a Rigid Corner
form. Noise generated by a small wind turbine located
on the roof of a building and its effect on inhabitants  In the proposedanalytical method, the scattering
can also be associated as another application area.  problem is treated as a boundary-value problem. A
For low-frequency problems, numerical techniques Green’s function is derived for the Helmholtz equa-
such as Finite Element Method (FEM) and Boundary tion with the exact boundary conditions. The rigid-
Element Method (BEM) are already in use to com- wall boundary condition on the wedge surface and
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wherej, andh{Y are the sphericdessel and Hankel
Figure 1: Sktch of thevedge, source-obsver positions definedin  functions of the first kind and of order, respectively.

polar coordinates The spherical functions are related to the cylindrical
Bessel and Hankel functions via,
Sommerfeld radiation condition at large distances -
from the source are satisfied in the derivation. Jvan(kr<) = /ﬂ\]mmﬂ/z(xu) 3)
<

MacDonald derived the Green’s function for the
Helmholtz equation around a wedge using polar co-

ordinates §]. The source and observer coordinates @ T

are (s, 0s, ¢s) and (k. 6o, ¢o), respectively shown in hien(kT>) = \/mHm+n+l/2(Kr>)' (4)
Figurel. In MacDonald’s formulation, the source is

assdumeﬁ to be_located in the mid-plane of tigzd Combining formulationg1) and (2), the Green’s
wedge, hence; = /2. function of a rigid wedge for arbitrary source aob-

For any wedge angle @ ¢ < 2r, the Green’s func-  server positions then becomdsi]
tion is defined as{]

—ni =
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(M +k—1/2) The trigonometric expansion of the Legendre func-

WP&”IZK(COSGO). D) tion P;Y”Ik(cose) employed in the computation8][is

The parametes is 1 form = 0 and2 form> 1 [7]. - _ 22X (sing)™

p-_ stands for the general Legendre function where Pr+2k(C0S0) = N
m = mrx/¢. J, andK, are the Bessel function of the © 1/9— mC(2k 1
first kind and of order and the modified Bessel func- Z (n+1/2-mr@2k+n+1) sin[(2n+ 1 + K)6].
tion of orderu, respectively. Corresponding expres- 43 ['(n+ 1I'(2k+n+nv +3/2)
sions withr. andr. interchange with the definition (6)
of the source and observer positions= maxrs, o)
andr< = min(rs, o).  is equal to 2x/A. Formulation (5 is a general solution of acoustic

Mel'nik and Podlipenko later proposed an expres- diffraction by a wedge. Replacing the wedgegle
sion for the scattering by a wedge containing soft ¢ by 37/2 results the specific case of a rigid corner.
walls for arbitrary source locations, as [8] Equation b) then becomes
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Figure 2: The map of acoustic potential of a point monopole nearby
a rigid corner atf = 10 kHz. The point monopole i®cated at
(1.324,7/2,7/6.6).

G(rs, o) = 6\/_% Z £ cos(2nps/3) cos(2meg/3)
S0 m=0

r'4m/3+ 2k+ 1) p-2m/3
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—2m/3 1
PZm'/T‘3{+2k(COSHO) Jomyz2ke1/2(kT <) Hén:/3+2k+l/2(Kr>)'

)

Equation ¥) is the exact solution for the acoustic
waves scattered by a rigid cornérwill then be used
to predict the scattered acoustic field of sources lo-
cated in the vicinity of a rigid corner. For simplicity,
a point monopole located nearby a corner will be in-
vestigated first. The theory will then be extended to a
point dipole and finally it will be applied to a source
representation of a fan.

(cosbs)

2.1. Scattered field of a monopole

Afirst test is performed putting a point monopole at
(1.322, /2, 7/6.6) with respect to the origin of a rigid
corner atf = 10 kHz. Figure2 shows the map of the
acoustic potential of a point monopole in the: /2
plane.llluminated and shadow zones due to the corner
can be seen clearly.

Once the Green'’s function is derived for a particu-

Figure 3: Directivity of a monopole located neauia rigid corner;
analytical solution (line) and BEM results (symbols)fat 1 kHz.
The monopole is located at (1.324,7/2,7/6.6) and observer dis-
tance is 34.

A second test is performed in order to compare the
analytical solution with numerical simulations. BEM
is known to be able to handle scattered field problems
for unbounded domains3]. However, since at least
10 acoustical elements per wavelengtlassumed to
be required in an accurate BEM computation, in order
to solve the BEM problem in a reasonable time, the
tests are performed at lower frequencies. The compu-
tations are then performed &t= 1 kHz. A harmonic
monopole source is located at (1.324, /2, 7/6.6). The
source strength of the monopole is selected(ag =
(0.01+ 0.01i)kg/®. In order to minimize effects of
the free edges, a corner containing twox/ .72 flat
plates is built. The size of the quadrilateral elements,
| ~ 0.14, are satisfying the BEM criteri&]. The total
number of acoustic elements is then equal to 7200.

Figure 3 shavs the directivity of the monopole-
corner configuration at = 1 kHz computed with the
analytical solution (line)and with BEM (symbols).
The radius of the field point mesh is selected as 34.
The sound pressure levels are plotted in dBs. A very
good agreement is observed in comparison of the am-
plitudes with the analytical and numerical solutions.
The difference for all the directions is not more than
1 dB. It may be related to the scattering of the waves

lar geometry, the acoustic field can then be computed from the free edges of the acoustic mesh.

for harmonic sources. The total acoustic field of a
monopole is equal to

P(w.r) = G(rs,ro)q(w) (8)

where q(w) is the source strength of the point
monopole.
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It appears that the scattered field of a point
monopole by a rigid infinite corner can be com-
puted accurately with the analytical model. Multipole
monopoles can be summed up if needed. However,
for a point dipole a specific development is more ap-
propriate which is derived in the following section.



Figure 4: The map of acoustic potential of a point dipole nearby Figure 5: Directivity of a dipole located nearkyrigid corner; ana-

a rigid corner atf = 10 kHz. The point dipole is locatedt lytical solution (line) and BEM results (symbols) it 1 kHz. The

(1.324,7/2,7/6.6). dipole is located at (1.324, 7/2, 7/6.6) perpendiculapte O plane
and observer distance is 3.

2.2. Scattered field of a dipole 2.3. Scattered field of tonal fan noise

The radiation field of a,point dipole is related 10 geyeral closed-form solutions addressing the free-
the gradient of the Green’s function with respect to fe1d tonal fan noise exist in literature [112; 13].

the source coordinates. The acoustic pressure then berhe exact closed-form analytical solution of free-field

comes tonal fan noise is obtained by introducing the free-
field Green'’s function into the solution of the inho-
p(w,r) = VG(rg, ro) - F(w) 9) mogeneous wave equation (see the related references

] o [12; 13] for further derivation).
whereF(w) is the source strength of the point dipole. A tonal fan noise formulation taking near-field

Detailed derivations of the Green’s function of arigid  arms intoaccount was derived by Roger [13]. The
corner for the dipole source can be found in the related 54 stic pressure at theh harmonic of the blade
reference 15]. passingfrequency (BPF) at the observer is given as
A contour plot in theg = 7/2 plane of the acous-  [13]
tic potential of a point dipole located nearby a cor-
ner is seen in Figurd. The dipole is oriented at the
same position as the monopole described in theipre
ous section applying perpendicular to the 0 plane.
The dipole-like behavior, reflected waves and shadow
zone are clearly seen in the figure. + Gfe)kppﬁxsing + G‘”(FE(@ — xcosd) — FE)R)r/))
The analytical solution is again compared to the nu- (10)
merical model. A perpendicular dipole go= 0 plane

is again tested. The strength of the dipole is selected ¢, g equally spaceétientical bladesFg, Fp andFr

asF(w) = (0.01+0.01iN. . are the radial (R), drag (D) and thrust (T) forces acting
Figure5 shows the directivity of the dipole-corner

configurations af = 1 kHz. The line and symbols

00

, ikypQ () =Du .
Phe =~ Z(—Gn&prxsme

p:—oo

represent the resultdbtained with the analytical solu- ° (X ) °
tion and BEM model, respectively. A good agreement )

of the analytical and numerical solutions is again ob- (] A.O
served. The difference between the analytical and nu- o
merical results for a dipole is less than 1 dB. % ° ..

Once validated for a single dipole, the theory is now

extended to an equivalent distribution of a tonal fan Figure 6: Equivalent fan souraeodeling strategies; (left) single
noise source. rotating dipole, (right) continuous array of phase shifted dipoles.
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on the blade, respectively. The applying forces are pe-
riodic with angular frequencf. k,g = NnBQ/cy is the
wave number at thaBth harmonic. The geometrical
parameters are shown in Figufe

Due to its periodicity, the sound field cdre ex-
panded as a Fourier seri&) is themth Fourier com-
ponent of the auxiliary function&y (N=1,2,3). The
auxiliary functionsG,, G, andGs are defined as

e—ikIRI 1

Go(t) =sin(Qt+ ¢’ — ¢) Gy(t)
G3(t) =cos(Qt+ ¢’ — ) Gy(t)

Gy(t) =

(11)

with k = Q/cp.

A common denominator of closed-form methods
mentioned above is the consideration of a rotating
dipole as shown in Figuré (left). However, intro-
ducing the gradient of the Green'’s functioreoforner
instead of the free-field one, it is not possible anymore
to obtain an exact analytical solution for the scattered
acoustic field of a fan operating next to a rigid corner.
Still, an equivalent fan source can be obtained em-
ploying circular distribution of phase shifted dipoles
as shown in Figuré (right). The phase difference of
the dipoles is linked to the azimuthpésition of the
dipole,Bq4. Using the dipole array, the equivalent free-
field acoustic pressure of B bladed fan at theath
harmonic of BPF then reads

B
Pre = 1. NZ Pred (12)

where Ny is the number of dipoles in the azimuthal
array

Introducing Equationg) into Equation (12), the to-
tal acoustic pressure field of the fan scattebgda
rigid corner reads

Figure 7: Source and listener coordinates
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Figure 8: Sketches of fan-corner configurations; fans operating par-
allel to thexy-plane (left) angbarallel to thexz-plane (right).

Pre(.1) = - 37 VB (B 1) - Flw ). (13)
Nqg

Since the Green’s function of réigid corner is ex-
tended for arbitrary positions of the source with re-
spect to the wedge origin, it can now be used for any
point dipole of the circular array. Equatiod3) is
a general solution for a fan operating outafigid
corner. It can therefore be used for different fan-
corner applications. The problem is first simplified to
a fan operating parallel to they-plane. Figurd (left)
shows the sketch of the simplified proble#.possi-
ble application area is the cooling units of locomotives
in parking position as mentioned above. Only the scat-
tering from the corner of the locomotive is addressed,
neglecting other installation effects. Only one side of
the locomotive is considered for the illustration.

The model fan employed has 10 equally spaced
identical blades. The fan is rotating with 3000rpm
making the blade loading frequency equaN@60 =
50 Hz. Artificial blade forces are considered for the
test case [15]. The blades are assumed acoustically
compact and reduced to point dipoles. The radius of
the fan source is selected as 0.1fot the first BPF,

f = 500 Hz. The center of the fan is located at
(0.61,7/2,7/12.8). The blade Mach number is then
around 0.1, satisfying the low Mach number condi-
tion. The observers are located in §eplane with a
radius of 1.5Awith respect to the origin of the corner.

Two low-speed axial fans are tested for comparison.
The first test includes only the thrust force compo-
nent, whereas the second one contains both drag and
thrust force components as in a more realistic applica-
tion. The radial forces are neglected for both configu-
rations.

The problem is also dealt with the numerical ap-
proach combining EquatioriQ) with the BEM for-
mulation. The same acoustic mesh and field points



Figure 9: Directivity of a fan operatingarallel to thexy-plane by Figure 11: Directivity of a fan operatingarallel to thexz-plane by
arigid corner; analytical solution (line) and BEM results (symbols) a rigid corner; analytical solution (line) and BEM results (symbols)
for testl. The fan center is located at (0.64, /2, 7/12.8). Fan radius for testl. The fan center is located at (0.661, 7/2, 7/6.6). Fan radius
is 0.151. Observers are in tlyg-plane at a radius of 1.5, at the first ~ is 0.151. Observers are in tlye-plane at a radius of 1.52, at the first
BPF, f = 500 Hz. BPF, f = 500 Hz.

are used as in the dipole test case for the BEM model. roof of buildings. A sketch of the problem is shown
The BEM problem is solved with LMS software Vir-  in Figure8 (right). The problem can be dealt with the
tual Lab B]. model described above only considering avrgien-
The scattered acoustic field directivities at the first tation of the fan. Same tests, one with only thrust and
BPFare seen for the first and the second tests in Fig- one with trust and drag forces, are selected for com-
ures9 and 10, respectively. Line and symbols repre- parison. The rotation center is at (0.664,7/2,7/6.6)
sent the analytical and numerical results, respectively and the fan is operating parallel to the-plane.
A good agreement is found between analytical and nu-  Figuresl1land12 show the scattered-field directiv-
merical solutions for both test fans. It is also seen ities of the first and second tests, respagdtiv The
that adding the drag component results higher acous-line and symbols represent the analytical and BEM
tic pressure levels in the shadow zone. methods, respectively. It is seen that adding drag
A second fan orientation is selected where the rota- forces affects the acoustic field around the rotation
tion axis is perpendicular to they-plane, such as the plane. Finally, implementation of the proposed ana-
example of small axial wind turbines located on the lytical model is validated against numerical simula-

Figure 10: Directivity of a fan operatingarallel to thexy-plane by Figure 12: Directivity of a fan operatingarallel to thexz-plane by
arigid corner; analytical solution (line) and BEM results (symbols) a rigid corner; analytical solution (line) and BEM results (symbols)
for test2. The fan center is located at (0.61,7/2,7/12.8). Fanradius for test2. The fan center is located at (0.664, /2, 7/6.6). Fan radius
is 0.151. Observers are in tyaplane at aradius of 1.54, atthe first ~ is 0.151. Observers are in tge-plane at a radius of 1.52, at the first
BPF, f = 500 Hz. BPF, f = 500 Hz.
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tions in all tested configurations.

As aresult, extending the Green'’s function arbi-
trary source positions and combining its gradient with
the dipole array model, the scattered field of a low-
speed axial fan by a rigid corner is computed accu-
rately. For high frequency problems, where the nu-
merical methods are demanding, the analytical solu-
tion can be useful irrespective of any mesh resolution
issue.

3. Conclusion

The scattering of low-speed axial fan noise by a
rigid corner is investigated numerically and analyti-
cally. It is seen that the scattered-field can be com-
puted accurately with both numerical and analytical
techniques. The numerical approach can be applied
to more complex geometries for bounded and un-
bounded domains. On the other hand, for relatively
simple configurations and where the numerical meth-
ods are computationally demanding, analytical solu-
tion can be useful independent from mesh resolution
at any frequencies.
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Abstract

This paper describes the theoretical formulation of an unsteady panel code for the prediction of turbulence-airfoil
interaction noise, valid for incompressible turbulent flows. This panel code formulation adopts the vorticity as
elementary distributed singularity, in contrast with other approaches that use distributed sources and a constant
intensity vortex sheet. Preliminary calculations present the quasi-steady and unsteady capabilities of this code
to predict the response of a thin airfoil subjected to pitch oscillations and incoming vortical disturbances. The
aerodynamic responses are compared with results obtained with the unsteady thin airfoil theory. The panel code
is shown to predict with good accuracy unsteady response of an incompressible sinusoidal gust for reduced fre-
quencies up to 8. This panel method advantages, from the traditional methods, for describing complex geometries
with reasonable accuracy but very low computational cost, being attractive for conceptual design applications.

Keywords: unsteady panel code, incompressible turbulent flow, turbulence interaction noise, airfoil noise

1. Introduction

In turbofan engines and contra-rotating open rotors
(CROR), airfoil-turbulence interaction typically con-
sidered as the main noise source generation mecha-
nism. For an airfoil free of flow separation, the noise
sources are mainly localized around the leading and
trailing edges. The first is the main noise source when
the incoming flow turbulence level exceeds a certain
level. For lower levels of incoming turbulence, the
scattering of self-generated boundary layer turbulence
at the trailing edge dominates. The present work fo-
cuses on the incoming turbulence problem, relevant
to the interaction between the wakes shed by the up-
stream rotor of a CROR and convected across the
downstream rotor plane.

The problem has been already addressed by many
authors since the seventies, and significant contri-
butions to the field consist of semi-analytical ap-
proaches, mostly relying on thin-airfoil theory, based
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on a frequency-wavenumber representation of the in-
coming turbulence.[1; 2; 3; 4; 5] With the recent
development of computational power, Large Eddy
Simulation (LES) and Direct Numerical Simulation
(DNS) techniques have been applied to obtain high
accuracy flow descriptions [6; 7; 8] providing valu-
able input for prediction schemes based on the aeroa-
coustic analogy. These techniques have been proven
to be powerful for simplified geometries, giving deep
insight into complex physical phenomena. However,
they still suffer from limited industrial applicability
due to the large CPU effort involved in the flow calcu-
lation.

Discrete vortex boundary element methods are an
interesting low-cost alternative to these expensive ap-
proaches, while offering more geometrical fidelity
than the thin airfoil theories that linearize the air-
foil shape as a flat plate with zero thickness, cam-
ber, and small angle of attack. The present work
follows this alternative approach. Previous works in



this manner include Gennaretti et. al [9; 10] who
proposed a unified boundary methodology for heli-
copter rotor aerodynamics and aeroacoustic predic-
tions. Grace [11] discussed the respective merits of
using time domain boundary element methods or har-
monic gust analysis. Recently Glegg and Deven-
port [12] developed an unsteady vortex-based panel
method and applied Amiet’s theory to compute the
far-field noise of turbulence-airfoil interaction. Their
results are in good agreement with the flat plate ana-
Iytical solution, nevertheless further comparison with
experiments or high accuracy simulations of airfoils
with realistic thickness, camber and angle of attack
are still needed. Recently Zheng et al. [13] also used
a discrete vortex method to predict the noise of a 3-
elements high lift device. His panel method formu-
lation, closer to the classical methods described by
Cebeci et al. [14], shows a remarkable aerodynamic
agreement with DNS simulations for the same geom-
etry, with an angle of attack up to 8 degrees.

To reach its objective the present paper follows
the Glegg and Devenport [12] unsteady vortex based
panel method to predict the airfoil response to a tur-
bulent inflow. In this paper, the aerodynamic unsteady
response of this panel code is compared with analyti-
cal solutions obtained from the thin airfoil theory.

2. Panel method

Cebeci et al. [14] present a conventional two-
dimensional panel method for the unsteady loading
computation. This methodology is based on the
Laplace’s solution of a potential flow generated by
the superposition of sources and vortex singularities,
where the first is localized on each panel application
point and the second is considered as a constant in-
tensity sheet, placed along the airfoil chord. The sys-
tem of equations is closed when the Kutta condition
is applied to the trailing edge. The wake vortex sheet
intensity is determined by Biot-Savart integration ap-
plied to the control surface in two dimensions. Con-
servation of the total circulation carried by the airfoil
and wake is prescribed according to first principles.

While Cebeci’s formulation has been extensively
used in aeroelastic and wing morphing problems, it
hasn’t been as successful for aeroacoustic prediction.
A more fruitful boundary element method for aeroa-
coustics, which applies the essence of the ideas de-
scribed by Cebeci but with a different singularity dis-
tribution, has been presented by Glegg et. al [12].
In this approach the panel method adopts point vor-
tices, instead of sources, as the base singularity. This
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singularity is distributed along each panel. This ap-
proach has been shown effective for predicting airfoil-
turbulence interaction noise for reduced frequencies
up to 10.

To describe the panel method used in this paper,
the Howe [15] functional airfoil surface definition is
adopted. In this formulation, for a given function f
the region where f(x) = O represents the body con-
tour, f(x) < O defines the airfoil interior region and
f(x) > 0 represents the exterior region. Using the
Heaviside function H(f(x)) it is possible to specify
the non-penetration boundary condition to the veloc-
ity vector v. Based on this definition, Howe proposes
that the incompressible flow over a nonpermeable sur-
face can be expressed as:

VXV x(H(f)y) = -V (H(fv) =
= VX (H(f)w + n x v|VfI6(f)) (1)

with the following solution:

H(f)v(x,1) = V x f al)(v—t)l* V(y) +

+fowd5@) @)
s 4nlx -y}

where D is the volume exterior to the airfoil surface
S. The first term of Equation (2) represents the veloc-
ity induced by the wake vorticity computed by Biot-
Savart integration. The second term of Equation (2)
is the contribution of the bound vorticity to the airfoil
surface velocity. Considering a right-handed coordi-
nate system, where the indices 1, 2 and 3 represent the
directions 7, j and k, respectively, the induced velocity
by a vortex of intensity y(y) is represented as:

nxv(y,t) = —y(k ©)

where n is the unit vector normal to the airfoil surface.
Substituting Equation (3) in Equation (2) leads to:

oy, 1) X (x—y)

H(f)v(x,1) = f ——dV(y) +
p A4nlx -yl
i _
_f*y(v) XEx 3y)ds(y) @
s A4nlx -yl

Since we consider a two-dimensional problem,
Equation (4) can be simplified to:

H(f)v(x,1) = ff ©0. t)x(x y)dysdyldyﬁ

4rlx —

9§f V(y)k><(x y) dysdS(y) (5)

drix —



where C represents the contour of the plane which
contains the airfoil and its wake vorticity. Integrating
in y3 we obtain:

H(wix.p = - [ SLDXEY
c 2nlx -yl

+9§y(y>f<><<x—y>
4 2mx—yP

dyidys +

Equation (6) can be solved numerically for the
bound vortex sheet strength y(y) with the imposition
of the non-penetration boundary condition on the air-
foil surface control and the Kutta condition at the air-
foil trailing edge. The time domain is discretized in
interval At and the wake vorticity is represented by a
sum of elementary vorticity elements as:

Wy, 1) = Y Tuksy =y )502 =57 @0), (7)

where I',, represents each discretized vortex circula-
tion and y™ its position on the coordinate reference
system. Equation (6) then simplifies into:

Tk x (x = y™ (1)
H(f)v(x,1) = —Z m
+567<yl%x<x—y>)

A

e SO ®

which can be numerically solved by a time-marching
routine and applying the Biot-Savart law.

Through Bernoulli equation, the instantaneous lift
per unit span is determined at each time step:

1 0
L=- 9§pdx1 = —p9§ Wldx; +p9§ Dix ©)
‘ 2" J¢ A Ot

with ¢ defined as the velocity potential. The lift can
be calculated from the vortex sheet strength as:

1 0 s
L= —pggyzdxl +p— é\f v(s")ds'dx;  (10)
2" Jo ot Ja Jo

with all integrals performed along the airfoil blade
contour.

3. Panel code validation

3.1. Steady lift

The following step is the unsteady panel code val-
idation considering its static response verification. In
order to validate its inviscid steady solution the devel-
oped code is verified against the XFOIL solution. The
NACA 0012 pressure distribution is compared against
the reference solution in Figure 1, along the airfoil
chord, for angles of attack of 0%, 5 and 10°.
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as(y). (6)
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Figure 1: Steady cp comparison with XFOIL for the airfoils NACA
0001, NACA 0005, NACA 0012 and NACA 0024.

3.2. Unsteady response - The Wagner Function

Once the steady solution is verified, the next step
is to compare the unsteady panel code response with
a case with known analytical solution. A first verifi-
cation case is the Wagner function. This solution is
based on the linearized airfoil theory, valid for very
thick airfoils subjected to small angles of attack. This
function expresses the time domain airfoil lift, when
subjected to an impulsive angle of attack variation.
The impulsive change of the angle of attack generates
a strong starting vortex, which by turns, influences the
airfoil velocity. Immediately after the angle of attack
impulse, the airfoil lift is considered as half of the
steady lift. As the starting vortex is convected with
the flow speed, its influence over the airfoil is reduced
and, after enough time, its influence completely dis-
appears and the flow becomes steady.

An approximation to the Wagner function is given
by the equation:

‘Il(t) — 1 _ q)le—El Ust/b _ q)ze—fooot/b (1 1)

where ®; = 0.165, &, = 0.335, ¢ = 0.0455 and
e = 0.3, so that and the time domain lift coefficient is
given by:

cl(t) = 2na¥Y(¢) (12)
and the lift force time variation becomes:

I(t) = prU?*ca¥(t) = prUcw¥(r) (13)

where w = Ua is the downwash velocity.



Figure 2 presents a comparison of the results ob-
tained by the unsteady panel code and the airfoils
NACA 0001, NACA 0005, NACA 0012 and NACA
0024. Here the airfoil NACA 0001 is considered as
an airfoil which satisfies the thin airfoil theory due to
its reduced thickness.

Cl x time

11

—=— Wagner response
06 NACA 0001
: —— NACA 0005
NACA 0012
0.5 L L T T
0 10 20 30 40 50

2*t/U

Figure 2: Airfoil lift response to an impulsive variation on angle of
attack.

3.3. Unsteady response - The Sears Function

The Wagner function is an interesting first assess-
ment of the unsteady panel code capabilities to pre-
dict the time domain unsteady lift, but, impulsive in-
creases in angle of attack are not very common and
generally speaking the the flow ingested by a lifting
surface is not homogeneous, suffering variations of
velocity module and angle of attack. In principal,
these inhomogeneities can be decomposed by a series
of trigonometric functions, which in turn can be rep-
resentative as a sum of sinusoidal form gusts. A direct
consequence of considering the airfoil impacting flow
as an sum of sinusoidal gusts is that its time domain
lift variation F(#) can be directly represented in the
frequency domain as F(w).

In the Sears theory the flow inhomogeneities are
considered to travel frozen along the airfoil chord, un-
affected by its pressure field, which means that their
decaying time is large, in comparison with the charac-
teristic traveling time along the airfoil chord. Consid-
ering that the transverse disturbances are mostly re-
sponsible for the unsteady loads and considering that
linearized airfoil theory is valid (the thickness, camber
and angle of attack small) it is possible to affirm that
the transverse gust component is predominant over the
longitudinal one.
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If steady inhomogeneous flow is assumed in a
frame of reference moving with the flow, by means of
a Fourier analysis of this flow, it can be decomposed
into a series of transverse sinusoidal gusts, in the sense
of unsteady aerodynamics, which can be character-
ized by the chord-wise wavenumber k; and its con-
vection speed Uco as w = k;Us. At a given value of
w or k; the Fourier coefficient F(k;) of the total un-
steady lift force is determined by the Sears theory, in
terms of transverse fluctuation amplitude w(k;). The
connection between the lift and the upcoming gust is
represented on Equation 14:

F(ky) = npcUocow(k))T (14)

where T is an additional aerodynamic transfer func-
tion.

In this way the local instantaneous lift fluctuation,
per unit span, is given by:

1=y

1+y’l‘

k1, y1,0) = 2poUgw(ky) S*(kDye ™ (15)

where y] = 2y;/c is the non-dimensional chord-wise
coordinate, with reference to the mid chord, and k} =
kic/2 is the non-dimensional aerodynamic wave num-
ber of the incident fluctuation, in the chord-wise direc-
tion. The theory applies to a given wavenumber and
requires a Fourier analysis of the incident fluctuations.
S (k}) is the known Sears function which is expressed
in terms of Bessel functions as:

S(ky) =

2
— o)) = GDL = i [ KD + YokDD™ (16)
1

For the comparison of the developed code against
the Sears function the airfoil NACA 0001 is consid-
ered as the flat plate, where the linearized airfoil the-
ory is applicable. To assess the capabilities of the
present code to compute the unsteady response of
thicker airfoils to a sinusoidal type gust the NACA
0005, NACA 0012 and NACA 0024 are considered
as well. The Figure 3 shows the panel’s code obtained
response compared with the analytical Sears function
solution.
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Figure 3: Airfoil lift response to a sinusoidal form impact gust.

4. Conclusions

This paper describes the aerodynamic part of val-
idation of an unsteady panel code to be used for
turbulence-airfoil interaction noise. This code is valid
for incompressible flows and it is able to describe si-
nusoidal gusts with reduced frequency up to 8. The
steady solution of this code perfectly matches with
the results given by traditional panel codes. With re-
gard to the unsteady solutions, for the case of an im-
pulsive angle of attack variation, this code gives an
overshoot of the lift for the initial time steps mainly,
due to the intensity of the starting vortex, which in-
fluence is reduced as it is convected with the flow
speed, and consequently the solution smoothly con-
verges to the stationary one. The second unsteady test-
ing case, where an sinusoidal gust impinges the airfoil
surface it is seen that the thickness effects diverges the
panel code solution from the analytical one. Based on
this two unsteady analysis, it can be concluded that
this unsteady panel code is suitable for airfoil sur-
face forces prediction, which information is required
for the turbulence-airfoil interaction noise prediction.
Future works intend to present acoustic comparison
against analytical solution cases, high precision sim-
ulations and experiments. The present results encour-
age further studies, because of the presently developed
panel code presents very low computational cost when
compared to traditional aeroacoustic codes, but shows
potential to predict the airfoil with the reasonable pre-
cision necessary in conceptual design engineering ap-
plications.

© von Karman Institute for Fluid Dynamics

5. Acknowledgments

Leandro D. Santana acknowledges the Brazilian
Coordination for Improvement of Higher Education
Personnel - CAPES - process number BEX-0520-10-
1. The support of the European Commission, pro-
vided under the FP7 DINNO-CROR project (Grant
Agreement no 255878), is gratefully acknowledged as
well.

References

[1] R. Amiet, Acoustic radiation from an airfoil in a turbulent
stream, Journal of Sound and Vibration 41 (4) (1975) 407 —
420. doi:10.1016/S0022-460X(75)80105-2.

[2] H. M. Atassi, The sears problem for a lifting airfoil revisited -
new results, Journal of Fluid Mechanics 141 (1984) 109-122.
doi:10.1017/S0022112084000768.

[3] H. M. Atassi, J. Grzedzinski, Unsteady disturbances of
streaming motions around bodies, Journal of Fluid Mechanics
209 (1989) 385-403.

[4] M. Howe, Correlation of lift and thickness noise sources
in vortex-airfoil interaction, Journal of Sound and Vibration
137 (1) (1990) 1 — 7. doi:10.1016/0022-460X(90)90713-A.

[5] M. R. Myers, E. J. Kerschen, Influence of incidence an-
gle on sound generation by airfoils interacting with high-
frequency gusts, Journal of Fluid Mechanics 292 (1995) 271-
304. doi:10.1017/S0022112095001522.

[6] H.J.Kim, S. Lee, N. Fujisawa, Computation of unsteady flow
and aerodynamic noise of naca0O018 airfoil using large-eddy
simulation, International Journal of Heat and Fluid Flow 27
(2006) 229-242.

[7]1 S. Moreau, J. Christophe, M. Roger, Les of the trailing-edge
flow and noise of a naca0012 airfoil near stall, in: Center
for Turbulence Research Proceedings of the Summer Program
2008, 2008.

[8] R. Sandberg, L. Jones, Direct numerical simulations of air-
foil self-noise, Procedia Engineering 6 (2010) 274 — 282.
doi:10.1016/j.proeng.2010.09.029.

[9] M. Gennaretti, L. Luceri, L. Morino, A unified boundary inte-
gral methodology for aerodynamics and aeroacoustics of ro-
tors, Journal of Sound and Vibration 200 (4) (1997) 467 —
489. doi:10.1006/jsvi.1996.0713.

[10] M. Gennaretti, G. Bernardini, Novel boundary integral formu-
lation for blade vortex interaction aerodynamics of helicopter
rotors, AIAA Journal 45 (6) (2007) 1169-1176.

[11] S. M. Grace, Unsteady blade response: The bvi model vs. the
gust model, in: 7th ATAA/CEAS Aeroacoustics Conference,
2001.

[12] S. A. Glegg, W. J. Devenport, Panel methods for airfoils
in turbulent flow, Journal of Sound and Vibration 329 (18)
(2010) 3709 — 3720. doi:10.1016/j.jsv.2010.03.007.

[13] Z. Zheng, B. Tan, Y. Xu, Near-field fluctuations and far-field
noise of a three-element airfoil system by a discrete vor-
tex method, Applied Mathematics and Computation 216 (4)
(2010) 1072 — 1086. doi:DOI: 10.1016/j.amc.2010.01.129.

[14] T. Cebeci, M. Platzer, H. Chen, K.-C. Chang, J. P. Shao, Anal-
ysis of Low-Speed Unsteady Airfoil Flows, Horizons Publish-
ing Inc., 2005.

[15] M. S. Howe, Acoustics of Fluid-Structure Interactions, Cam-
bridge University Press, 1998.



© von Karman Institute for Fluid Dynamics





