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Bona fide least squares formulations form an interesting alternative to Galerkin and Petrov-Galerkin weak 
formulations for the discretization of partial differential equations. The least squares methods convert well-posed 
partial differential equations into symmetric positive definite algebraic equations, irrespective of the type of the 
underlying partial differential equation. Furthermore, the least squares approach circumvents compatibility 
requirements in mixed/constrained formulations, which implies that no inf-sup condition between the 
approximating velocity space and the approximating pressure space needs to be imposed. These features allow a 
unified approach of a variety of flows encountered in aerospace engineering, such as compressible vs. 
incompressible and avoids the directional dependence in subsonic, transonic and supersonic flows. 
 
Recently, the least squares formulation has been extended to spectral element methods and compared to the 
spectral Galerkin method. The convergence rate with h-refinement and P-enrichment is the same as for the 
Galerkin method and so is the accuracy in terms of the L2-norm and the H1-norm.  
 
In order to achieve high order accuracy as well in space as in time, a space-time formulation has been 
implemented. In this formulation the temporal variable is considered as an additional spatial dimension. This 
means that no distinction is made between the treatment of the temporal and spatial directions and the problem is 
augmented with one dimension.  
 
Spectral methods perform best when the underlying 
exact solution is sufficiently smooth and therefore 
spectral methods have mainly been used in 
elliptic/parabolic problems. The use of spectral methods 
in hyperbolic problems which allow for discontinuous 
solutions "traditionally has been viewed as problematic" 
[1], and therefore very little work has been done. In the 
present research the method is applied to solve linear and 
nonlinear advection equations with both smooth and 
non-smooth exact solutions.  A priori error estimates and 
numerical results show that the scheme is stable without 
the necessity to add any artificial diffusion. For smooth 
solutions high order accuracy is demonstrated. The 
solution converges exponentially for p-type refinement, 
i.e. increasing the polynomial interpolation degree, while 
the size of the elements remains unchanged. For all other 
cases the convergence is algebraic (See also Figure 1).  
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Recently the method has been extended to systems of non-linear hyperbolic differential equations which allow 
for discontinuous solution types. A conservative formulation in which the flux is added as an additional variable 
has been proposed. Special attention has been paid to the approximation order of the different variables of the 
system. So far it was globally accepted that there did not exist any inf-sub conditions as there are for Galerkin 
based methods. However, recent numerical results show that there are, specially if the underlying exact solution 
is non-smooth, some restrictions on how to choose the polynomial approximation order of the different variables 
of a hyperbolic system. Our experiences on how to choose the right finite element spaces most likely will be 
published in 2007.  
        
 
[1] D. Gottlieb and J.S. Hesthaven: Spectral Methods for hyperbolic problems, J. Comput. Appl. Math., 128, 83-
131, 2001. 
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Figure 1.  h/p-convergence for the linear 
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